www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnfangswertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:09 So 05.08.2012
Autor: teo

Aufgabe
Geben Sie für das Anfangswertproblem

[mm] y'=\wurzel{y^2-1}; y(0) = 1 [/mm]

eine zweiparametrige Schar von Lösungen an.

Hallo,

ich komm einfach nicht auf die Lösung. Mit Tdv wirds nix und mit Substitution komm ich auch nicht weiter.

Mit TdV erhalte ich zum Beispiel (mit Formelsammlung)

[mm] y'=\wurzel{y^2-1} \Rightarrow \integral \frac{1}{\wurzel{y^2-1}} dy = \integral dx \Rightarrow ln(c(y+\wurzel{y^2-1})) = x + C \Rightarrow c(y+\wurzel{y^2-1}) = e^{x+C} [/mm] hier hörts dann auf. Darf ich das überhaupt machen wie wäre das denn geschickter?

Vielen Dank!

Grüße

        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 So 05.08.2012
Autor: MathePower

Hallo teo,

> Geben Sie für das Anfangswertproblem
>
> [mm]y'=\wurzel{y^2-1}; y(0) = 1[/mm]
>  
> eine zweiparametrige Schar von Lösungen an.
>  Hallo,
>  
> ich komm einfach nicht auf die Lösung. Mit Tdv wirds nix
> und mit Substitution komm ich auch nicht weiter.
>
> Mit TdV erhalte ich zum Beispiel (mit Formelsammlung)
>  
> [mm]y'=\wurzel{y^2-1} \Rightarrow \integral \frac{1}{\wurzel{y^2-1}} dy = \integral dx \Rightarrow ln(c(y+\wurzel{y^2-1})) = x + C \Rightarrow c(y+\wurzel{y^2-1}) = e^{x+C}[/mm]
> hier hörts dann auf. Darf ich das überhaupt machen wie
> wäre das denn geschickter?
>  


Mit der Substitution [mm]y=\cosh\left(t\right)[/mm] ist es geschickter.


> Vielen Dank!
>  
> Grüße


Gruss
MathePower

Bezug
                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 So 05.08.2012
Autor: teo

Hallo,

ok. Aber das ist ja dann auch sofort die Lösung oder denn cosh(0)=1 und cosh'(t)=sinh(t) = [mm] \wurzel{cosh^2(t).-1}. [/mm]

Was ist denn jetzt noch mit der zweiparametrigen Schar gemeint?

Vielen Dank!

Grüße

Bezug
                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 So 05.08.2012
Autor: MathePower

Hallo teo,

> Hallo,
>  
> ok. Aber das ist ja dann auch sofort die Lösung oder denn
> cosh(0)=1 und cosh'(t)=sinh(t) = [mm]\wurzel{cosh^2(t).-1}.[/mm]
>  
> Was ist denn jetzt noch mit der zweiparametrigen Schar
> gemeint?
>  


Wahrscheinlich ist hier die implizite Form der Lösung gemeint:

[mm]y-\cosh\left(x\right)=0[/mm]


> Vielen Dank!
>  
> Grüße


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]