www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnfangswertproblem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Problem mit Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 12:21 Di 25.06.2013
Autor: Anli

Aufgabe
Bestimmen Sie die Lösung des Anfangswertproblems!
x [mm] ̇=e^{x}*cos(t), x(t_{0})=x_{0} [/mm] ∈R, [mm] t_{0}∈R, [/mm]

Unser Problem ist, dass [mm] x(t_{0}) [/mm] nicht gleich einer bestimmten Zahl ist.
Kurz zur Info: Über dem ersten x ist ein Punkt.

Wir hoffen, ihr könnt uns da auf die Sprünge helfen ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Di 25.06.2013
Autor: steppenhahn

Hallo,

> Bestimmen Sie die Lösung des Anfangswertproblems!
>  x [mm]̇=e^{x}*cos(t), x(t_{0})=x_{0}[/mm] ∈R, [mm]t_{0}∈R,[/mm]
>  Unser Problem ist, dass [mm]x(t_{0})[/mm] nicht gleich einer
> bestimmten Zahl ist.

Wie würdet ihr es denn ausrechnen, wenn [mm] $x_0$ [/mm] eine Zahl wäre?
Rechnet doch einfach genauso - verwendet das Verfahren zur Trennung der Variablen.

Nach []Wikipedia ist eine Lösung des Anfangswetproblems gegeben durch die Gleichung

[mm] $\int_{x_0}^{x(t)} \frac{1}{e^{s}} [/mm] ds = [mm] \int_{t_0}^{t}\cos(s) [/mm] ds.

Diese Gleichung könnt ihr nun nach $x(t)$ auflösen.


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]