www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisAngeordnete Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Angeordnete Körper
Angeordnete Körper < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Angeordnete Körper: Aufgabe, Frage
Status: (Frage) beantwortet Status 
Datum: 19:15 Di 09.11.2004
Autor: BiliAgili

Man stelle fest, welche der folgenden Implikationen über die Körperelemente x,a,b E K im allgemeinen falsch sind:

Die Frage wie beweis ich es bei dieser Aufgabe:

Es ist [mm] x(x-2a^2) [/mm] > genau dann, wenn  [mm] |x-a^2 [/mm] | > [mm] a^2. [/mm]

Ich würde mich über einen Lösungsansatz freuen

Gruß Peter
Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Angeordnete Körper: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:06 Di 09.11.2004
Autor: BiliAgili

Ist ab > 1 und a<1, so ist b>1

Dies heisst doch aber dass ab > 1 nicht stimmen kann wenn a= 0 oder negativ ist dann ist doch ab immer < 1 dass ist doch ein wiederspruch. Reicht dies oder kann man dies auch genauer Beweisen ?!

Hab diese Frage in keinem anderen Forum gestellt würd mich über eine schnelle Antwort freuen

MFG Peter

Bezug
                
Bezug
Angeordnete Körper: Je nachdem...
Status: (Antwort) fertig Status 
Datum: 21:47 Di 09.11.2004
Autor: Gnometech

Hallo!

Naja, es kommt auf die Aufgabenstellung an. Falls $a$ und $b$ als positiv vorausgesetzt sind, dann ist die Behauptung so korrekt. Andernfalls natürlich nicht, was man am besten durch Angabe eines Gegenbeispiels beweist:

Für $a = -3$ und $b = -4$ ist $ab = 12 > 1$ aber sowohl $a < 1$ als auch $b < 1$.

Wie gesagt, für positive $a$ und $b$ hingegen, ist das so richtig - kannst Du einen Beweis finden?

Gruß,

Lars

Bezug
        
Bezug
Angeordnete Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 03:44 Sa 13.11.2004
Autor: Stefan

Hallo Peter!

> Es ist [mm]x(x-2a^2)[/mm] >0 genau dann, wenn  [mm]|x-a^2[/mm] | > [mm]a^2. [/mm]


Hier noch die Lösung:

[mm] "$\Rightarrow$": [/mm]

Aus [mm] $x(x-2a^2)>0$ [/mm] folgt:

1) $x>0$ und [mm] $x>2a^2$ [/mm]

oder:

2) $x<0$ und [mm] $x<2a^2$. [/mm]

Im ersten Fall gilt:

[mm] $x-a^2>a^2$, [/mm]

und wegen [mm] $x-a^2>x-2a^2>0$: [/mm]

[mm] $\vert x-a^2\vert [/mm] > [mm] a^2$. [/mm]

Im zweiten Fall gilt:

$x<0$,

also:

$ x [mm] -a^2 [/mm]  < [mm] -a^2$, [/mm]

und wegen [mm] $x-a^2 [/mm] < x < 0$:

[mm] $\vert [/mm] x - [mm] a^2 \vert >a^2$. [/mm]


[mm] "$\Leftarrow$": [/mm]

Aus

[mm] $\vert [/mm] x - [mm] a^2 \vert [/mm] > [mm] a^2$ [/mm]

folgt im Falle [mm] $x>a^2$: [/mm]

[mm] $x-a^2 [/mm] > [mm] a^2$, [/mm]

also:

[mm] $x>2a^2 [/mm] > 0$

und damit:

[mm] $x(x-2a^2)>0$ [/mm]

oder aber im Falle [mm] $x
[mm] $-a^2 [/mm] > [mm] x-a^2$, [/mm]

also:

[mm] $x<0<2a^2$ [/mm]

und damit ebenfalls:

[mm] $x(x-2a^2)>0$. [/mm]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]