www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieAnkleben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Ankleben
Ankleben < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ankleben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Sa 15.03.2008
Autor: GorkyPark

Hallo zusammen,

ich habe eine generelle Frage zu folgenden Konstrukten: Y [mm] \cup_{f} [/mm] X. (Wie heissen diese Objekte eigentlich mathematisch?)

Das ist ja eine topologische Summe modulo eine Äquivalenzrelation def. via einer stetigen Abb. f. Meine Frage ist: wie ist die Topologie darauf definiert? Was ist eine offene (bzw. abgeschlossene) Menge auf diesem Objekt?
(Mir ist schon klar, dass dies die Topologie der Summe ist, aber ich habe trotzdem Mühe, vielleicht könnte mir das jemand anschaulich erklären oder beschreiben?)

Vielen Dank

Euer GorkyPark.

        
Bezug
Ankleben: Antwort
Status: (Antwort) fertig Status 
Datum: 02:14 Mo 17.03.2008
Autor: Manatu

Hallo GorkyPark,

auch wenn deine Frage leider schon überfällig ist, will ich doch zu nächtlicher Stunde ncoh ein paar Sätze dazu schreiben:

1.) zu [mm] $X\cup_f [/mm] Y$: Dies ist, wie du in der Überschrift schon geschrieben hast, eine Verklebung entlang von $f$. Das kannst du dir auch wirklich als Verklebung vorstellen (und so heißen sie auch mathematisch: Verklebekonstruktion oder im englischen glueing-construktion). Zum Beispiel sei mal [mm] $X=D^1$ [/mm] die Kreisscheibe und [mm] $Y=S^1$ [/mm] der Kreisring und [mm]f:\partial D^1\rightarrow S^1[/mm] die bijektive Abbildung vom Rand der Kreisscheibe in den Kreisring. Dann ist zumindest Mengenmäßig die Verklebung [mm] $X\cup_f [/mm] Y$ genau wieder die Kreisscheibe.

2.) Topologisch sollte es auch wieder die Kreisscheibe sein: Die Topologie auf einer Verklebung [mm]X\cup_f Y[/mm] ist gleich der Quotientenraumtopologie, denn mehr ist es ja auch nicht. Genau, wie du gesagt hast, ist es ja die Summe (oder disjunkte Vereinigung) modulo einer Äquivalenzrelation. Die Topologie ist also die Quotiententopologie von der Summentopologie. Wie kann man das anschaulich machen? Am besten, indem du wirklich an das Verkleben denkst. Eine Menge ist dann offen, wenn alle Urbilder (von der Quotientenprojektion) selbst offen sind. Also, stell dir vor, du reißt die beiden Mengen dort, wo du sie zusammengeklebt hast, wieder auseinander und stellst bei beiden teilen wieder den Urzustand her. Dann müssen halt die entsprechenden Mengen auf diesen beiden Teilen offen sein, die zu der Menge auf dem verklebten Teil gehören.

Ich hoffe, das hat dir schonmal ein bisschen weiter geholfen.
Wenn du's noch brauchst, schlage ich gerne auch mal Beispiele aus meiner Vorlesung damals nach.

Mathematische Grüße,

Manatu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]