www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauAnnäherung Meßreihe mit Prabel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maschinenbau" - Annäherung Meßreihe mit Prabel
Annäherung Meßreihe mit Prabel < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Annäherung Meßreihe mit Prabel: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:53 Mi 10.01.2007
Autor: TsuChungChih

Aufgabe 1
Aufgabe 2
Eine Messreihe {(ti;fi)| i= 1, ... n} soll durch eine Parabel f(t)=A*t² approximiert werden. Finden Sie hierzu den besten Koeffizienten A.

Hinweis: die besten Funktionen minimiert die Summe der quadratischen Fehler E= [mm] \summe_{i=1}^{n} [/mm] |f(ti)-fi|².


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo.
Also ich komme hier absolut einfach nicht weiter. Hab auch nicht wirklich einen geeigneten Ansatz bis jetzt gefunden. Bis jetzt hab ich mir Gedanken gemacht das ich ja eine Parabel habe mit einem Faktor A. Wenn ich den Faktor A immer größer werden lasse weitet sich die Parabel. Denn so wurde mir gesagt um so größer ich einen Messbereich mache um so geringer sind meine Fehler. Mein Problem ist was hat der Hinweis mit meiner Messreihe zu tun und wie kann ich sie anschließend durch die Parabel ausdrücken.

Wäre für jeden Gedanken/Lösung dankbar, ich hoffe einer kann mit meiner Aufgabe was anfangen.

Vielen Dank im voraus

        
Bezug
Annäherung Meßreihe mit Prabel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Mi 10.01.2007
Autor: sicktronic

Hallo,

soweit ich weiß nennt sich das Verfahren zur Lösung dieser Aufgabe "Methode der kleinsten Quadrate". Unter diesem Begriff kannst du mal suchen, da müsste sich einiges finden lassen.

Vom Prinzip her ist [mm]E= $ \summe_{i=1}^{n} $ |f(t_i)-f_i|² [/mm] deine Abstandsfunktion welche wie in einer Extremwertaufgabe minimiert werden muss. Aber das ist nur die halbe Wahrheit. Denke mal im Mathe-Bereich dieses Forums wärst du besser beraten.

MfG

Bezug
        
Bezug
Annäherung Meßreihe mit Prabel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Do 11.01.2007
Autor: chrisno


> Eine Messreihe {(ti;fi)| i= 1, ... n} soll durch eine
> Parabel f(t)=A*t² approximiert werden. Finden Sie hierzu
> den besten Koeffizienten A.
>  
> Hinweis: die besten Funktionen minimiert die Summe der
> quadratischen Fehler E= [mm]\summe_{i=1}^{n}[/mm] |f(ti)-fi|².
>  

Der Hinweis sagt, dass Du das beste A findest, indem Du das Minimum von E bestimmst.
$E = [mm] \summe_{i=1}^{n} [/mm] (A * [mm] t_i^2 [/mm] - [mm] f_i)^2$ [/mm]
Das musst Du nun nach A ableiten und gleich Null setzen. Daraus ergibt sich das "beste" A.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]