www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik/HypothesentestsAnsatz Nullhypothese
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistik/Hypothesentests" - Ansatz Nullhypothese
Ansatz Nullhypothese < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ansatz Nullhypothese: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Sa 23.11.2013
Autor: rubi

Aufgabe
Ein Biathlet behauptet, beim Schiessen eine Trefferquote von 95% zu erreichen. Um seiner Behauptung Nachdruck zu verleihen, gibt er 100 Schüsse ab.
Wie viele Treffer muss er erzielen, damit seine Behauptung mit einer Irrtumswahrscheinlichkeit von 5% glaubhaft ist ?

Hallo zusammen,

in der Musterlösung des Buches, aus dem die Aufgabe stammt, wird als Nullhypothese [mm] H_0: [/mm] p = 0,95 und als Alternativhypothese [mm] H_1: [/mm] p < 0,95 angegeben. (die Nullhypothese kann daher auch als p<=0,95 aufgefasst werden)
Als Ablehnungsbereich ergibt sich dann die Menge {0,...,90}.
Er muss also gemäß dieser Lösung mindestens 91 Treffer erzielen.

Würde man die Irrtumswahrscheinlichkeit auf 25% setzen, wäre der Ablehnungsbereich {0,...,93}, er müsste dann mindestens 94 Treffer erzielen.

Gemäß der Aufgabenbeschreibung müsste es doch eher so sein, dass je niedriger die Irrtumswahrscheinlichkeit ist, desto mehr Treffer müsste er erzielen, um seine Behauptung zu bestätigen.  Hier ist es nun umgekehrt.

Mir ist klar, dass die Wirkung so ist, weil eben die Alternativhypothese als p<0,95 festgelegt wurde.

Wäre es bei dieser Aufgabe nicht besser, wenn man [mm] H_0: [/mm] p<=0,95 und [mm] H_1: [/mm] p > 0,95 setzen würde ?
Das würde doch heißen, dass man der Behauptung des Biathleten von vornherein misstraut und er seine Behauptung sozusagen bestätigen muss.
Wenn ich von vornherein [mm] H_0: [/mm] p>=0,95 ansetze, ist seine Behauptung doch so lange glaubhaft, so lange man ihm nicht das Gegenteil mit einem Test unterstellen kann.
Also wer ist gemäß Aufgabenstellung in der "Beweispflicht" ?

Danke für eure Antworten !

Viele Grüße
Rubi




        
Bezug
Ansatz Nullhypothese: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:39 Mo 25.11.2013
Autor: rubi

Hallo zusammen,

da ich nicht weiß, ob meine Frage "untergegangen" ist, starte ich noch einen Versuch.

Danke für eure Antworten.

Viele Grüße
Rubi

Bezug
        
Bezug
Ansatz Nullhypothese: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Mo 25.11.2013
Autor: Al-Chwarizmi


> Ein Biathlet behauptet, beim Schiessen eine Trefferquote
> von 95% zu erreichen. Um seiner Behauptung Nachdruck zu
> verleihen, gibt er 100 Schüsse ab.
> Wie viele Treffer muss er erzielen, damit seine Behauptung
> mit einer Irrtumswahrscheinlichkeit von 5% glaubhaft ist ?
>  Hallo zusammen,
>
> in der Musterlösung des Buches, aus dem die Aufgabe
> stammt, wird als Nullhypothese [mm]H_0:[/mm] p = 0,95 und als
> Alternativhypothese [mm]H_1:[/mm] p < 0,95 angegeben. (die
> Nullhypothese kann daher auch als p<=0,95 aufgefasst
> werden)    [haee]

Da hast du wohl eher gemeint:  [mm] H_0: [/mm]  p>=0.95  , oder ?


>  Als Ablehnungsbereich ergibt sich dann die Menge
> {0,...,90}.
> Er muss also gemäß dieser Lösung mindestens 91 Treffer
> erzielen.
>
> Würde man die Irrtumswahrscheinlichkeit auf 25% setzen,
> wäre der Ablehnungsbereich {0,...,93}, er müsste dann
> mindestens 94 Treffer erzielen.
>
> Gemäß der Aufgabenbeschreibung müsste es doch eher so
> sein, dass je niedriger die Irrtumswahrscheinlichkeit ist,
> desto mehr Treffer müsste er erzielen, um seine Behauptung
> zu bestätigen.  Hier ist es nun umgekehrt.
>
> Mir ist klar, dass die Wirkung so ist, weil eben die
> Alternativhypothese als p<0,95 festgelegt wurde.
>
> Wäre es bei dieser Aufgabe nicht besser, wenn man [mm]H_0:[/mm]
> p<=0,95 und [mm]H_1:[/mm] p > 0,95 setzen würde ?
> Das würde doch heißen, dass man der Behauptung des
> Biathleten von vornherein misstraut und er seine Behauptung
> sozusagen bestätigen muss.
> Wenn ich von vornherein [mm]H_0:[/mm] p>=0,95 ansetze, ist seine
> Behauptung doch so lange glaubhaft, so lange man ihm nicht
> das Gegenteil mit einem Test unterstellen kann.
> Also wer ist gemäß Aufgabenstellung in der
> "Beweispflicht" ?
>  
> Danke für eure Antworten !
>  
> Viele Grüße
>  Rubi


Hallo Rubi,

bei Aufgaben dieser Art kommen leider etwas frag-
würdige Formulierungen in den Aufgabenstellungen
recht oft vor. Im vorliegenden Beispiel soll aber
offenbar die Behauptung "p=0.95" als Nullhypothese
akzeptiert werden und in der Testserie dann nur
geprüft werden, ob diese (recht ehrgeizige) Hypothese
aufgrund einer zu niedrigen Trefferquote abgelehnt
werden muss.
Zentral ist, dabei den Begriff der "Irrtumswahr-
scheinlichkeit" richtig zu interpretieren. Es geht dabei
nur um einen "Irrtum" der Art, dass man dem Schützen
seine Behauptung (p=0.95) nicht glauben würde,
obwohl sie tatsächlich richtig wäre.

LG ,   Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]