www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnsatz v Typ der rechten Seite
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Ansatz v Typ der rechten Seite
Ansatz v Typ der rechten Seite < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ansatz v Typ der rechten Seite: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Mi 19.11.2008
Autor: Torrente85

Aufgabe
Es wurde das inhomogene lineare DGL-System mittels Variation der Konstanten gelöst:

[mm] \vec{x'} [/mm] = [mm] \pmat{ 7 & 1 \\ -1 & 5 } [/mm] * [mm] \vec{x} [/mm] + [mm] e^{6t} [/mm] * [mm] \vektor{0 \\ 1} [/mm]

Begründen Sie nun, warum der Ansatz [mm] \vec{x} [/mm] = [mm] e^{6t} [/mm] * [mm] \vektor{a \\ b} [/mm] hier nicht zum Ziel führt.

Ich habe das ganze erstmal rein rechnerisch mit dem Ansatz vom Typ der rechten Seite untersucht. Das sieht so aus:

[mm] y_{p}(t) [/mm] = [mm] e^{6t} [/mm] * [mm] \vektor{a \\ b} [/mm]

[mm] 6e^{6t} [/mm] * [mm] \vektor{a \\ b} [/mm] = [mm] \pmat{ 7 & 1 \\ -1 & 5 } [/mm] * [mm] e^{6t} [/mm] * [mm] \vektor{a \\ b} [/mm] + [mm] e^{6t} [/mm] * [mm] \vektor{0 \\ 1} [/mm]

6 * [mm] \vec{v} [/mm] = A * [mm] \vec{v} [/mm] + [mm] \vektor{0 \\ 1} [/mm]
A * [mm] \vec{v} [/mm] - 6 * [mm] \vec{v} [/mm] = [mm] \vektor{0 \\ -1} [/mm]
(A - 6E) * [mm] \vec{v} [/mm] = [mm] \vektor{0 \\ -1} [/mm]

[mm] (\pmat{ 7 & 1 \\ -1 & 5 } [/mm] - [mm] \pmat{ 6 & 0 \\ 0 & 6 }) [/mm] * [mm] \vektor{a \\ b} [/mm] = [mm] \vektor{0 \\ -1} [/mm]

[mm] \pmat{ 1 & 1 \\ -1 & -1 }) [/mm] * [mm] \vektor{a \\ b} [/mm] = [mm] \vektor{0 \\ -1} [/mm]

Daraus ergibt sich nach Anwendung von Gauss:

I) a + b = 0
II) 0 + 0 = -1

Dadurch sieht man ja, dass dies nicht lösbar ist.

Wie kann ich nun aber OHNE diese Rechnung zeigen und begründen, dass der oben gennante Ansatz nicht zum Ziel führt??? Gibt es gewisse Bedingungen für den Ansatz vom Typ der rechten Seite, die hier im Ansatz bereits nicht erfüllt sind?
Danke für eure Hilfe!

        
Bezug
Ansatz v Typ der rechten Seite: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Mi 19.11.2008
Autor: MathePower

Hallo Torrente85,

> Es wurde das inhomogene lineare DGL-System mittels
> Variation der Konstanten gelöst:
>  
> [mm]\vec{x'}[/mm] = [mm]\pmat{ 7 & 1 \\ -1 & 5 }[/mm] * [mm]\vec{x}[/mm] + [mm]e^{6t}[/mm] *
> [mm]\vektor{0 \\ 1}[/mm]
>  
> Begründen Sie nun, warum der Ansatz [mm]\vec{x}[/mm] = [mm]e^{6t}[/mm] *
> [mm]\vektor{a \\ b}[/mm] hier nicht zum Ziel führt.
>  Ich habe das ganze erstmal rein rechnerisch mit dem Ansatz
> vom Typ der rechten Seite untersucht. Das sieht so aus:
>  
> [mm]y_{p}(t)[/mm] = [mm]e^{6t}[/mm] * [mm]\vektor{a \\ b}[/mm]
>  
> [mm]6e^{6t}[/mm] * [mm]\vektor{a \\ b}[/mm] = [mm]\pmat{ 7 & 1 \\ -1 & 5 }[/mm] *
> [mm]e^{6t}[/mm] * [mm]\vektor{a \\ b}[/mm] + [mm]e^{6t}[/mm] * [mm]\vektor{0 \\ 1}[/mm]
>  
> 6 * [mm]\vec{v}[/mm] = A * [mm]\vec{v}[/mm] + [mm]\vektor{0 \\ 1}[/mm]
>  A * [mm]\vec{v}[/mm] -
> 6 * [mm]\vec{v}[/mm] = [mm]\vektor{0 \\ -1}[/mm]
>  (A - 6E) * [mm]\vec{v}[/mm] =
> [mm]\vektor{0 \\ -1}[/mm]
>  
> [mm](\pmat{ 7 & 1 \\ -1 & 5 }[/mm] - [mm]\pmat{ 6 & 0 \\ 0 & 6 })[/mm] *
> [mm]\vektor{a \\ b}[/mm] = [mm]\vektor{0 \\ -1}[/mm]
>  
> [mm]\pmat{ 1 & 1 \\ -1 & -1 })[/mm] * [mm]\vektor{a \\ b}[/mm] = [mm]\vektor{0 \\ -1}[/mm]
>  
> Daraus ergibt sich nach Anwendung von Gauss:
>  
> I) a + b = 0
>  II) 0 + 0 = -1
>  
> Dadurch sieht man ja, dass dies nicht lösbar ist.
>  
> Wie kann ich nun aber OHNE diese Rechnung zeigen und
> begründen, dass der oben gennante Ansatz nicht zum Ziel
> führt??? Gibt es gewisse Bedingungen für den Ansatz vom Typ
> der rechten Seite, die hier im Ansatz bereits nicht erfüllt
> sind?


Ganz ohne Rechnung wird es nicht gehen.

Wenn Du die Eigenwerte der Matrix

[mm]\pmat{ 7 & 1 \\ -1 & 5 }[/mm]

berechnest, dann wirst Du sehen, weshalb der Ansatz für die inhomogene Lösung nicht funktioniert.


>  Danke für eure Hilfe!


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]