www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAntwort ist sehr wichtig!
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Längen, Abstände, Winkel" - Antwort ist sehr wichtig!
Antwort ist sehr wichtig! < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Antwort ist sehr wichtig!: Bezug Kreis - Kegel
Status: (Frage) beantwortet Status 
Datum: 17:55 Mi 19.11.2008
Autor: Maddox

Aufgabe
Gegeben ist ein Kreis mit Radius R . Aus ihm wird ein Stück hinausgeschnitten. Der Rest, Winkel alpha, wird zu einem Kegel geformt(der unten offen ist). Wie lässt sich der Winkel alpha verändern, damit der Kegel einen möglichst großen Flächeninhalt hat?

Guten Abend, könntet ihr mir bitte helfen diese Aufgabe zu lösen? Ich komme nicht weiter. Hier mein Lösungsvorschlag:

-Volumen(Kegel)= Pie/3 * [mm] r^2 [/mm] * h
-Radius R = s (Seitenlänge vom Kegel)
-man kann [mm] s^2=r^2+h^2 [/mm] nach h umstellen und sie in V einsetzen, nun fehlt nur noch r

Und hier kommt mein Problem, da ich nicht weiß wie ich das Bogemaß richtig anwende. Ich würde mich freuen, wenn mir jemand helfen würde.

Freundliche Grüße

Maddox


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Antwort ist sehr wichtig!: Frage unklar
Status: (Antwort) fertig Status 
Datum: 18:23 Mi 19.11.2008
Autor: reverend

...trotzdem einige Antwortteile.

Unklar ist, was eigentlich gesucht wird. Die Aufgabe sagt "Flächeninhalt", kein sinnvolles Wort bei einem Kegel. Auch kann nicht nur der Mantel gemeint sein, der ist ja leicht aus dem Kreissegment zu ermitteln und natürlich dann am größten, wenn nichts herausgeschnitten wird. Die Gesamtoberfläche des Kegels allerdings erreicht für diesen Fall auch ein Maximum, weil auch die Grundfläche maximal wird, nämlich ebenfalls ein Kreis mit Radius [mm] \a{}R. [/mm] Der Kegel wäre allerdings entartet, da er die Höhe 0 hätte.

So wie Du rechnest, ist wohl eher das Volumen zu maximieren.

Du setzt richtig [mm] \a{}s=R [/mm] an, so dass Du die Volumenformel als [mm] \a{}V=V(r) [/mm] aufstellen kannst. Gut.

Überleg mal eben räumlich, wie der Kegel geformt wird. Der Kreisbogen des verwendeten Kreissegments wird zum Kreis geformt, die beiden Schnittradien werden aneinandergefügt.

Du weißt damit, dass die Länge des Kreisbogens zwei Bedingungen erfüllt:
1) [mm] L=L(R,\alpha) [/mm]
2) [mm] \a{}L=L(r) [/mm]

Die zweite Gleichung ist ja einfach zu finden, es ist der Kreisumfang "unten" am Kegel: [mm] L=2\pi \a{}r [/mm]

Du signalisierst, dass Du Schwierigkeiten mit dem Kreisbogen hast. Der ganze Kreis hat den Kreisbogen [mm] 2\pi \a{}R, [/mm] ein Teil des Kreises, nämlich das Segment mit dem Zentrumswinkel [mm] \alpha, [/mm] muss dann weniger haben...
Das geht ganz offenbar einfach proportional, der gesuchte Kreisbogen verhält sich zum Kreisumfang wie [mm] \alpha [/mm] zu [mm] 2\pi. [/mm]

Alles in allem hast Du dann erst [mm] \a{}h [/mm] ersetzt, so dass [mm] \a{}V=V(R,r) [/mm] wurde.
Dann wirst Du aus den beiden Gleichungen [mm] \a{}L=L(R,\alpha) [/mm] und [mm] \a{}L=2\pi \a{}r [/mm] das [mm] \a{}L [/mm] eliminieren müssen und [mm] \a{}r=r(R,\alpha) [/mm] bestimmen. Dann bekommst Du eine Darstellung [mm] \a{}V=V(R,\alpha). [/mm] Nun nimmst Du [mm] \a{}R [/mm] als Konstante...

Bezug
                
Bezug
Antwort ist sehr wichtig!: wieso denn kein grad?
Status: (Frage) beantwortet Status 
Datum: 18:44 Mi 19.11.2008
Autor: Maddox

erstmal danke für die schnelle Antwort. Und ja, ich meinte natürlich das Volumen.

Der gesamte Kreisbogen hat den Umfang: 2*Pie*R
Und es ist ebenfalls klar, dass (2*Pie*R)- alpha sein muss,
aber wie kriege ich jetzt da ein Grandmaß rein? Die Antwort sollte in Grad gegeben werden. Muss ich dann nicht schreiben x/2*Pie*R = alpha/ 360 ??


Wenn man das nun nach x umstellt erhält man x= alpha*2*Pie*R/360

Und jetzt müsste x doch =r sein, oder?


Bezug
                        
Bezug
Antwort ist sehr wichtig!: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Mi 19.11.2008
Autor: reverend


> Der gesamte Kreisbogen hat den Umfang: 2*Pie*R
>  Und es ist ebenfalls klar, dass (2*Pie*R)- alpha sein
> muss,
>  aber wie kriege ich jetzt da ein Grandmaß rein? Die
> Antwort sollte in Grad gegeben werden. Muss ich dann nicht
> schreiben x/2*Pie*R = alpha/ 360 ??

Die Frage versteh ich nicht, aber die Antwort ist gut, falls Dein x das gleiche ist wie mein L.  

>
> Wenn man das nun nach x umstellt erhält man x=
> alpha*2*Pie*R/360

[ok]

> Und jetzt müsste x doch =r sein, oder?

[notok]

Wenn ich Dein x mal übernehme, gilt [mm] x=2\pi \a{}r [/mm]
Und damit [mm] r=R*\bruch{\alpha}{360} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]