www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitAnwendung Satz Arzela-Ascoli
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Anwendung Satz Arzela-Ascoli
Anwendung Satz Arzela-Ascoli < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung Satz Arzela-Ascoli: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Fr 08.01.2010
Autor: steppenhahn

Aufgabe
Der Satz von Arzela-Ascoli lautet:
Für eine Folge [mm] (f_{n})_{n\in\IN} [/mm] von Funktionen in C[a,b] (stetig), welche die beiden Bedingunen:

- [mm] $\sup_{n\in\IN}||f_{n}||_{\infty} [/mm] = [mm] \sup_{n\in\IN}\max_{x\in[a,b]}|f_{n}(x)| [/mm] < [mm] \infty$ [/mm] (gleichmäßig beschränkt)
- [mm] $\forall \varepsilon [/mm] > 0 [mm] \exists \delta_{\varepsilon} [/mm] > 0 [mm] \forall n\in\IN: \max_{x,x'\in[a,b], |x-x'|\le\delta_{\varepsilon}}|f_{n}(x)-f_{n}(x')| [/mm] < [mm] \varepsilon$ [/mm] (gleichgradig stetig)

erfüllt, existiert eine Teilfolge [mm] (f_{n_{k}})_{k\in\IN}, [/mm] welche gegen ein [mm] f\in [/mm] C[a,b] konvergiert, d.h. [mm] ||f_{n_{k}}-f||_{\infty} \to [/mm] 0 [mm] (k\to\infty). [/mm]

- 1.) Man zeige durch ein Gegenbeispiel, dass die im Satz von Arzela-Ascoli vorausgesetzte gleichmäßige Beschränkheit von [mm] (f_{n})_{n\in\IN} [/mm] eine notwendige Voraussetzung ist.

- 2.) Man wende den Satz auf die im Intervall [mm] [-\frac{\pi}{2},\frac{\pi}{2}] [/mm] durch [mm] $f_{n}(x):=n*\sin(\frac{1}{n}*x)$ [/mm] definierte Funktionfolge an und finde Häufungspunkte von [mm] (f_{n}) [/mm] sowie den Limes der Teilfolge.

Hallo!

Bei 1.) hatte ich gedacht, ich könnte das Gegenbeispiel

[mm] $f_{n}(x) [/mm] = n$

benutzen. Offensichtlich ist [mm] f_{n} [/mm] nicht gleichmäßig beschränkt, aber es ist gleichgradig stetig, da für beliebiges [mm] n\in\IN [/mm] dann [mm] $f_{n}(x)$ [/mm] eine konstante Funktion ist (diese ist insbesondere lipschitz-stetig mit L = 1, woraus, wie ich schon bewiesen habe, gleichgradige Stetigkeit folgt).

Dann hat jede Teilfolge [mm] (f_{n_{k}}) [/mm] die Form [mm] $f_{n_{k}} [/mm] = [mm] n_{k} \to \infty$ (k\to\infty), [/mm] d.h. auch diese Teilfolge kann nicht konvergieren. (?)

Ist das so okay? Mir gefällt das Ende noch nicht so ganz, denn eigentlich muss ich ja konkret zeigen, dass solch eine Grenzfunktion f nicht existieren kann.

Angenommen, f wäre solch eine Funktion, für die

[mm] $\max_{x\in[a,b]}|f_{n_{k}}(x) [/mm] - f(x)| [mm] \to [/mm] 0$ [mm] (k\to\infty) [/mm]

gilt. Ich muss zeigen, dass es ein [mm] \varepsilon [/mm] gibt, sodass [mm] $\forall [/mm] N [mm] \in \IN \exists [/mm] k > N: [mm] \max_{x\in[a,b]}|f_{n_{k}}(x) [/mm] - f(x)| [mm] \ge \varepsilon$. [/mm]
Wähle [mm] \varepsilon [/mm] = 1.
Da [mm] f\in [/mm] C[a,b], gibt es ein [mm] $K\in\IR$ [/mm] sodass $|f(x)| < K$ für alle [mm] $x\in [/mm] [a,b]$. Da [mm] $f_{n_{k}} \to \infty [/mm] $ für [mm] k\to\infty, [/mm] gibt es ein [mm] K_{2} [/mm] sodass für alle [mm] x\in[a,b] [/mm] gilt: [mm] $f_{n_{k}}(x) [/mm] = [mm] n_{k} [/mm] > K + 2$ für alle $k > [mm] K_{2}$. [/mm]
Wähle ich nun $k = [mm] max(K_{2}, [/mm] N) > N$, so ist

[mm] $\max_{x\in[a,b]}|f_{n_{k}}(x) [/mm] - f(x)| [mm] \ge \max_{x\in[a,b]}(|f_{n_{k}}(x)| [/mm] - |f(x)|) = [mm] \max_{x\in[a,b]}(|f_{n_{k}}(x)|) [/mm] - [mm] \min_{x\in[a,b]}(|f(x)|) [/mm] = [mm] n_{k} [/mm] - [mm] \min_{x\in[a,b]}(|f(x)|) [/mm] > 2 [mm] \ge [/mm] 1 = [mm] \varepsilon$. [/mm]

Oder ist das viel zu umständlich?

Aufgabe 2.) später, wenn 1.) fertig ist :-).
Vielen Dank für Eure Hilfe!

Grüße,
Stefan

        
Bezug
Anwendung Satz Arzela-Ascoli: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Sa 09.01.2010
Autor: AT-Colt

Sieht gut aus, die Folge [mm] $f_{n}(x) [/mm] = n$ hätte ich auch genommen. Wenn Du Dich so mit dem Professor unterhälst, könntest Du beim "(?)" fertig sein, dem Übungsgruppenleiter wirst Du wohl noch Deine Ausführungen danach präsentieren müssen ^^;

Die letzte Gleichungskette ist nicht ganz stimmig, bzw. nur für die spezielle Funktionenfolge konstanter Funktionen richtig. Besser wäre es, wenn Du direkt nach dem ersten (Un)Gleichheitszeichen [mm] $f_{n_{k}}$ [/mm] einsetzt, sonst sieht es nach ein paar Regeln von max/min-Bildung aus, die ich im Moment nicht mit Sicherheit bezeugen könnte.

Bezug
                
Bezug
Anwendung Satz Arzela-Ascoli: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:09 Sa 09.01.2010
Autor: steppenhahn

Hallo AT-Colt,

danke für deine Antwort! Da werde ich das mal versuchen noch zu "kitten" und mich dann an die 2. Aufgabe machen :-)

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]