www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAnwendung Satz von Rolle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Anwendung Satz von Rolle
Anwendung Satz von Rolle < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung Satz von Rolle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 Mi 26.11.2008
Autor: mercator

Aufgabe
Seien q, [mm] f_1, f_2 [/mm] stetig im Intervall [a,b], q<0, [mm] f_1 [/mm] <= [mm] f_2. [/mm] Zeigen Sie, dass für die Lösungen [mm] y_1, y_2 [/mm] die Randwertaufgabe

[mm] y_i''+q(x)y_i [/mm] = [mm] f_i(x) [/mm] a<=x<=b, f(a)=f(b)=0

gilt [mm] y_1>=y_2 [/mm]

Hallo,

ich soll hier den Satz von Rolle anwenden. Dann hab ich eine NST der 1. Ableitung wo soll ich das anwenden? Umformen hilft bei mir auch nicht weiter

kann mir jemand einen tipp geben?

LG mercator!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Anwendung Satz von Rolle: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mi 26.11.2008
Autor: uliweil

Hallo mercator,

folgenden Lösungsweg schlage ich vor:
Zunächst ist die RWA linearer Natur, d.h. man kann das Ganze auf die Differenzfunktion y(x) := [mm] (y_{1} [/mm] - [mm] y_{2})(x) [/mm]  und deren Positivität reduzieren.
Der Beweis sollte indirekt funktionieren, nimm also an, dass es ein x [mm] \in [/mm] [a, b] gibt, für das gilt y(x) < 0. Wegen der Stetigkeit von y ist y damit auch in einem ganzen Intervall [mm] (\alpha, \beta) \subseteq [/mm] [a, b] negativ und [mm] \alpha [/mm] und [mm] \beta [/mm] können so gewählt werden, das [mm] y(\alpha) [/mm] und [mm] y(\beta) [/mm] = 0 sind.
Dann löst man die DGl nach y'' auf und schreibt sie so um, dass y' als Integral  (*) von [mm] \alpha [/mm] nach x dasteht.
Dann wendet man auf y in den Grenzen von [mm] \alpha [/mm] und [mm] \beta [/mm] den Satz von Rolle an und schliesst, dass für ein [mm] \xi \in (\alpha, \beta) [/mm]  
[mm] y(\xi) [/mm] = 0 ist.
Andererseits ist der Integrand von (*) insgesamt < 0 , was zu einem Widerspruch führt.

Gruß
Uli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]