www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieAnwendung chinesischer Rests.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Anwendung chinesischer Rests.
Anwendung chinesischer Rests. < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung chinesischer Rests.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:42 Mo 28.05.2007
Autor: LenaFre

Aufgabe
Gesucht kleinste positive Lösung des Systems von Kongruenzen:
[mm] x\equiv1+5(mod37) [/mm]
[mm] x\equiv16+5(mod31) [/mm]

Hallo!

Ich hab leider nicht verstanden, wie ich den chinesischen Restsatz anwenden kann. Ich hoffe ihr könnt mir weiterhelfen.
Vielen Dank

        
Bezug
Anwendung chinesischer Rests.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Mo 28.05.2007
Autor: MasterMG

Hi LenaFre....
Also bei dem Chinesischen Restesatz geht es ja im Grunde darum alle Lösungen von z. B. solchen Kongruenzen wie diese zu bekommen. [mm] x\equiv1+5(mod37) [/mm]
[mm] x\equiv16+5(mod31) [/mm]

[mm] \gdw [/mm]

[mm] x\equiv6(mod37) [/mm]
[mm] x\equiv21(mod31) [/mm]

D.h. gesucht werden alle x, die beide Kongruenzen erfüllen. Das x soll also bei Division durch 37 den Rest 6 lassen und bei Division durch 31 den Rest 21.
Nun, ich würde folgendermaßen vorgehen:
Zunächst schreibe ich eine der Kongruenzen etwas um und sage: [mm] x\equiv6(mod37) \Rightarrow [/mm] x=k*37+6. Nun setzte ich dieses x in [mm] x\equiv21(mod31) [/mm] ein und erhalte [mm] k*37+6\equiv21(mod31). [/mm]
Das löse ich dann nach k und erhalte [mm] k\equiv18(mod31). [/mm]
Das k, was ich gesucht habe lässt bei Division durch 31 den Rest 18. Ich wähle mir jetzt also ein k aus dieser Restklasse, z.B. die 18 selbst, denn 18 lässt bei Division durch 31 den Rest 18. dieses k setzte ich nun in die oben erwähnte Gleichung x=k*37+6 ein und bekomme eine Lösung x=672. Das ist die Kleinste positive Lösung, die die Voraussetzungen erfüllt. Nun, bei dir ist auch nur danach gefragt, aber dennoch:
Die restlichen Lösungen für x bekommst du, indem du nun 37*31 nimmst, was 1147 ergibt. D.h. nämlich, dass die Komplette Lösung "Restklasse 672 modulo 1147" lautet. Damit sind alle Lösungen angegeben. Das nächstgrößere x, das die beiden Kongruenzen erfüllt ist demnach 672+1147=1819 und das nöchstkleinere x wäre 672-1147=-475. In deiner Aufgabe fragt man jedoch nach einer kleinster positiven Lösung für x und sie ist x=672.
Nun, ich hoffe es ist dir einleutender geworden und das bring dich weiter.
MFG




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]