Anzahlbestimmung von Gleichung < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe 1 | Ermitteln Sie die Anzahl aller möglichen Lösungen für die folgende Gleichung:
x1+x2+x3+x4+x5=12 mit [mm] x_k [/mm] E N für k= 1,2,3,4,5 |
Aufgabe 2 | Ermitteln Sie die Anzahl aller möglichen Lösungen für die folgende Gleichung:
x1+x2+x3+x4+x5=12 mit [mm] x_k [/mm] E [mm] N_0 [/mm] für k= 1,2,3,4,5 |
Aufgabe 3 | Bestimmen Sie die Anzahl aller möglichen Lösungen der folgenden Ungleichung:
x1+x2+x3 < 10 mit [mm] X_k [/mm] E [mm] N_0 [/mm] für k = 1,2,3 |
Diese Aufgaben haben wir im ersten Semester für angehende Grundschullehrer bekommen und wissen überhaupt nicht, wie man das berechnen soll bzw.kann. Wir haben absolut keinen Lösungsansatz. Der Dozent hat hierzu auch keinen Denkanstoß gegeben -.-
Der Unterstrich (_) soll das Tiefgestellte darstellen. E steht für Element und N für die natürlichen Zahlen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo und
> Ermitteln Sie die Anzahl aller möglichen Lösungen für
> die folgende Gleichung:
> x1+x2+x3+x4+x5=12 mit [mm]x_k[/mm] E N für k= 1,2,3,4,5
> Ermitteln Sie die Anzahl aller möglichen Lösungen für
> die folgende Gleichung:
> x1+x2+x3+x4+x5=12 mit [mm]x_k[/mm] E [mm]N_0[/mm] für k= 1,2,3,4,5
> Bestimmen Sie die Anzahl aller möglichen Lösungen der
> folgenden Ungleichung:
> x1+x2+x3 < 10 mit [mm]X_k[/mm] E [mm]N_0[/mm] für k = 1,2,3
> Diese Aufgaben haben wir im ersten Semester für angehende
> Grundschullehrer bekommen und wissen überhaupt nicht, wie
> man das berechnen soll bzw.kann. Wir haben absolut keinen
> Lösungsansatz. Der Dozent hat hierzu auch keinen
> Denkanstoß gegeben -.-
Der Denkanstoß hier heißt Partitionen einer Menge. Habt ihr das schon durchgenommen?
Man kann es auch ohne dieses Konzept etwa so angehen: Wie viele Möglichkeiten gibt es für [mm] x_1, [/mm] wie viele für [mm] x_2 [/mm] usw. Diese Möglichkeiten werden dann miteinander multipliziert.
Gruß, Diophant
|
|
|
|
|
Hey,
danke für deine Antwort. Partitionen haben wir nicht durchgenommen. Ich habe mir einmal den Artikel bei Wiki durchgelesen, aber irgendwie weiterhelfen, tut er jetzt nicht -.-
Zumindest uns nicht. Wie können wir denn die einzelnen Mengen bestimmen? Wir dürfen ja nicht über diese eine Zahl kommen...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:02 Di 29.01.2013 | Autor: | abakus |
> Ermitteln Sie die Anzahl aller möglichen Lösungen für
> die folgende Gleichung:
> x1+x2+x3+x4+x5=12 mit [mm]x_k[/mm] E N für k= 1,2,3,4,5
> Ermitteln Sie die Anzahl aller möglichen Lösungen für
> die folgende Gleichung:
> x1+x2+x3+x4+x5=12 mit [mm]x_k[/mm] E [mm]N_0[/mm] für k= 1,2,3,4,5
> Bestimmen Sie die Anzahl aller möglichen Lösungen der
> folgenden Ungleichung:
> x1+x2+x3 < 10 mit [mm]X_k[/mm] E [mm]N_0[/mm] für k = 1,2,3
> Diese Aufgaben haben wir im ersten Semester für angehende
> Grundschullehrer bekommen und wissen überhaupt nicht, wie
> man das berechnen soll bzw.kann. Wir haben absolut keinen
> Lösungsansatz. Der Dozent hat hierzu auch keinen
> Denkanstoß gegeben -.-
Hallo,
der Lösungsansatz heißt: ARBEITEN (und zwar systematisch).
Eine Lösung mit 5 Einsen gibt es nicht.
Eine Lösung mit 4 Einsen gibt es nicht.
Eine Lösung mit 3 Einsen ist
1+1+1+...+...=12 und geht nur mit noch je einer 4 und 5.
Wie viele mögliche Vertauschungen in der Reihenfolge dieser 5 Summanden gibt es? -->Arbeiten! (Zur Kontrolle: es sind 20).
Eine Lösung mit 2 Einsen ist
1+1+......=12. Finde alle möglichkeiten für die restlichen drei Summanden, die fehlende Teilsumme 10 zu erhalten, ohne nochmals eine 1 zu verwenden.
Ich finde 2+3+5, 2+4+4, 3+3+4.
Wie viele mögliche Vertauschungen gibt es
bei (1,1,2,3,5)
bei (1,1,2,4,4)
bei (1,1,3,3,4) ?
Eine Löung mit nur einer 1 erfordert noch 4 andere Summanden, deren Teilsumme 11 ist...
Gruß Abakus
> Der Unterstrich (_) soll das Tiefgestellte darstellen. E
> steht für Element und N für die natürlichen Zahlen.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Ok, das klingt schonmal ganz gut.
Gibt es hierfür nicht irgendeine Formel, die all das Berechnen und Ausprobieren vorne weg lässt? Mit den üblichen Fakultäten und Binomialkoefizienten kamen wir nicht weiter...
|
|
|
|
|
Hallo,
> Ok, das klingt schonmal ganz gut.
>
> Gibt es hierfür nicht irgendeine Formel, die all das
> Berechnen und Ausprobieren vorne weg lässt? Mit den
> üblichen Fakultäten und Binomialkoefizienten kamen wir
> nicht weiter...
Immer diese Formeln. Man kann nicht jedes Problem in eine Formel stopfen.
Im übrigen habe ich dir das Konzept (welches letztendlich eine Formel ist) zur ersten Aufgabe genannt: Man muss berechnen, in wie viele Partitionen man eine Menge aus 12 Elementen aufteilen kann, allerdings unter den Nebenbedingenungen, dass keine leeren Partitionen und keine mit Größe >5 zugelassen sind.
Wenn ihr das noch nicht gemacht habt, bleibt dir nichts anderes übrig als der von abakus vorgeschlagene Weg.
Gruß, Diophant
|
|
|
|
|
Ok, danke, wir werden uns dann mal daran setzen....Zum Glück ist es die letzte Übung in diesem Semester und dann zum Teufel mit Kombinatorik.
|
|
|
|