www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)App. Konfidenzint. bin(1,p)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistik (Anwendungen)" - App. Konfidenzint. bin(1,p)
App. Konfidenzint. bin(1,p) < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

App. Konfidenzint. bin(1,p): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Mi 03.12.2008
Autor: cinderella79

Hallo,

die Ermittlung von approximierten Konfidenzintervallen für das Binomialmodell

[mm] X_{1},...,X_{n} [/mm] (iid) bin(1,p)-verteilt

nutzt ja den zentralen Grenzwertsatz mit der standardisierten Summe der [mm] X_{i} [/mm]

[mm] S_{n}^{*}=\bruch{\summe_{i=1}^{n}X_{i}-n\mu}{\sigma\wurzel{n}}=\bruch{\bruch{1}{n}\summe_{i=1}^{n}X_{i}-\mu}{\sigma/\wurzel{n}} [/mm]

Die Standardabweichung des Schätzers [mm] p_{dach} =\bruch{1}{n}\summe_{i=1}^{n}X_{i} [/mm] ist doch [mm] \sigma=\wurzel{p(1-p)}. [/mm] Warum wird bei der Konstruktion des Konfidenzintervalls für p stattdessen hier der Schätzer genommen? Das sich das besser umformen lässt ist klar, aber warum darf man das?

Danke für Eure Hilfe.
Cindy

        
Bezug
App. Konfidenzint. bin(1,p): Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Mi 03.12.2008
Autor: luis52

Warum wird bei der
> Konstruktion des Konfidenzintervalls für p stattdessen hier
> der Schätzer genommen? Das sich das besser umformen lässt
> ist klar, aber warum darf man das?
>  

>

Moin Cindy,

das Problem besteht darin, dass das p in [mm] \sigma [/mm] unbekannt ist. Wie kann man sich behelfen? Man weiss, dass das arthritische Mittel [mm] $\hat{p}$ [/mm] ein "vernuenftiger" Schaetzer fuer p ist (erwartungstreu, konsistent). Was liegt also naeher, als p durch [mm] $\hat{p}$ [/mm] in [mm] \sigma [/mm] zu ersetzen? Welche Auswirkungen das insbesondere auf das (behauptete) Konfidenzniveau des Intervalls hat, steht auf einem anderen Blatt.

vg Luis


Bezug
                
Bezug
App. Konfidenzint. bin(1,p): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Sa 06.12.2008
Autor: cinderella79

Danke erstmal. Bin leider immer noch nicht ganz schlau.

Ich will doch gerade ein Konfidenzintervall für p berechnen. Stimmt denn die Verteilungseigenschaft des zentralen Grenzwertsatzes überhaupt noch, wenn ich den Schätzer einsetze?

Bezug
                        
Bezug
App. Konfidenzint. bin(1,p): Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Sa 06.12.2008
Autor: luis52


> Danke erstmal. Bin leider immer noch nicht ganz schlau.
>  
> Ich will doch gerade ein Konfidenzintervall für p
> berechnen. Stimmt denn die Verteilungseigenschaft des
> zentralen Grenzwertsatzes überhaupt noch, wenn ich den
> Schätzer einsetze?

Im allgemeinen nicht, hier (im Fall der Bernoulli-Vertteilung) aber schon.

vg Luis


Bezug
                                
Bezug
App. Konfidenzint. bin(1,p): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 So 07.12.2008
Autor: cinderella79

danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]