Approximationsproblem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:15 Do 10.01.2008 | Autor: | Owen |
Aufgabe | Gegeben ist A|B= [mm] \pmat{ 3 & -5 & 1 | 5 \\ -5 & 3 & 0 | -10 \\ 1 & -7 & 2 | 0 \\ 3 & 11 & -4 | 10 }
[/mm]
Bestimme den Rang A.
|
Um den Rang A zu bestimmen, muss man die Matrix mit dem Eliminationsverfahren umformen:
[mm] \pmat{ 3 & -5 & 1 |5 \\ 0 & -16 & 5 |-5 \\ 0 & 0 & 0 |0 \\ 0 & 0 & 0 |0 }
[/mm]
Es gilt nun: Rang A=2=Rang (A|B) [mm] \wedge [/mm] 2<3
Der folgende Fall ist somit eingetreten:
Rang A=r=Rang (A|B) [mm] \wedge [/mm] r<n.
Das Gleichungssystem hat unendlich viele Lösungen.
Zum einen möchte ich mich vergewissern, was die einzelnen Ausdrücke bedeuten. Rang A meint die Anzahl unabhängiger Gleichungen, müsste daher in jedem Fall mit der Anzahl der Zeilen (ohne die Nullzeilen) übereinstimmen. n ist die Anzahl der Unbekannten, müsste somit mit der maximal vorhandenen Spaltenanzahl übereinstimmen. Bei Rang(A|B) bin ich mir nicht ganz sicher. So weit ich weiß, ist das die Anzahl der Zahlen die rechts stehen (5 und -5), somit die Anzahl 2. Stimmt das alles soweit? Zum anderen würde ich noch gerne wissen, wie man in diesem Falle eine annähernd "gute" Lösung bekommt. Dies hat etwas mit Approximation zu tun. Wie wird so etwas gemacht?
|
|
|
|
Was den Rang angeht OK, wenn du dich nicht verrechnet hast. Lösungsmenge L ist jetzt eine Gerade, da dim L = n-r. Wie geht man vor? Du löst beide Gleichungen nach dem dritten Wert (sagen wir [mm] x_3) [/mm] auf:
[mm]x_2=\bruch{5+5x_3}{16}[/mm]
[mm]x_1=\bruch{35+3x_3}{16}[/mm]
Damit haben die Lösungen die Form:
[mm]\vec{y}=\bruch{1}{16} \vektor{35+3x_3 \\ 5+5x_3 \\ x_3} = \bruch{1}{16} ( \vektor{35 \\ 5 \\ 0} + x_3 \vektor{3 \\ 5 \\ 1} )[/mm]
Oder im Standardformat:
[mm]\vec{y}= \vektor{\bruch{35}{16} \\ \bruch{5}{16} \\ 0} + \lambda \vektor{3 \\ 5 \\ 1} [/mm]
|
|
|
|