www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Arbeitsvorbereitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Arbeitsvorbereitung
Arbeitsvorbereitung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arbeitsvorbereitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Mi 25.04.2007
Autor: MatheSckell

Aufgabe 1
  Kürze so weit wie möglich
[mm] \bruch{20*5^{n+2}+25*5^{n+1}}{(\wurzel[n]{25})^{2n}} [/mm]


Aufgabe 2
In 150g eines Farbstoffes sind [mm] 6*10^{23} [/mm] Farbmoleküle enthalten.
Von diesem Farbstoff wird 1g in den Bodensee gegeben, der ca. [mm] 5*10^{10} m^{3} [/mm] Wasser enthält. Im Laufe der Zeit verteilt sich der Farbstoff gleichmäßig.
Wie viele Farbmoleküle befinden sich dann in einem Liter Wasser.


Aufgabe 3
Zur Herstellung eines Gefäßes wird aus einem quadratischen Blech der Seitenlänge a=25cm ein größtmöglicher Kreisauschnitt mit dem Mittelspunktwinkel [mm] \alpha [/mm] =288° ausgestanzt.

a) Wie viel Prozent des Blechs gehen verloren?

b) Der Kreisauschnitt wird nun so gebogen und verlötet, dass ein kegelförmiges Gefäß entsteht. Berechne das Volumen des Gefäßes. (Die Dicke des Blechs wird vernachlässigt.)


Hallo liebes Forum,

könntet Ihr bitte kontrollieren ob alles stimmt.

1. [mm] \bruch{20*5^{n+2}+25*5^{n+1}}{(\wurzel[n]{25})^{2n}} [/mm] = [mm] \bruch{5^{n+1}*5(4*5+5)}{(25^{\bruch{1}{n}})^{2n}}=\bruch{5^{n+1}}{5}=5^{n} [/mm]

2. 80.000.000 Moleküle

3.

a) rund 21 %
b) 768,1 [mm] cm^{3} [/mm]

Vielen Dank

        
Bezug
Arbeitsvorbereitung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Mi 25.04.2007
Autor: musicandi88

Hallo,

> 1. Kürze so weit wie möglich
>  [mm]\bruch{20*5^{n+2}+25*5^{n+1}}{(\wurzel[n]{25})^{2n}}[/mm]
>  
> 2. In 150g eines Farbstoffes sind [mm]6*10^{23}[/mm] Farbmoleküle
> enthalten.
>  Von diesem Farbstoff wird 1g in den Bodensee gegeben, der
> ca. [mm]5*10^{10} m^{3}[/mm] Wasser enthält. Im Laufe der Zeit
> verteilt sich der Farbstoff gleichmäßig.
>  Wie viele Farbmoleküle befinden sich dann in einem Liter
> Wasser.
>  
> 3. Zur Herstellung eines Gefäßes wird aus einem
> quadratischen Blech der Seitenlänge a=25cm ein
> größtmöglicher Kreisauschnitt mit dem Mittelspunktwinkel
> [mm]\alpha[/mm] =288° ausgestanzt.
>  
> a) Wie viel Prozent des Blechs gehen verloren?
>  
> b) Der Kreisauschnitt wird nun so gebogen und verlötet,
> dass ein kegelförmiges Gefäß entsteht. Berechne das Volumen
> des Gefäßes. (Die Dicke des Blechs wird vernachlässigt.)
>  Hallo liebes Forum,
>  
> könntet Ihr bitte kontrollieren ob alles stimmt.
>  
> 1. [mm]\bruch{20*5^{n+2}+25*5^{n+1}}{(\wurzel[n]{25})^{2n}}[/mm] =
> [mm]\bruch{5^{n+1}*5(4*5+5)}{(25^{\bruch{1}{n}})^{2n}}=\bruch{5^{n+1}}{5}=5^{n}[/mm]

...korrekt! :-)

> 2. 80.000.000 Moleküle

falsch...

[mm] \bruch{\bruch{6*10^{23}}{150}}{5*10^{10}}=8*10^{10} [/mm] Moleküle
also 80 000 000 000 (80 Mrd.)

> 3.
>
> a) rund 21 %

falsch....

Fläche des Kreissegmentes [mm] F=\bruch{288°}{360°}*\pi*\bruch{625}{4}=125\pi [/mm]

Fläche Blech [mm] B=25^2=625 [/mm]

[mm] \bruch{125\pi}{625}*100=62.8 [/mm]
Verlust beträgt 100%-62.8%=37.2%

>  b) 768,1 [mm]cm^{3}[/mm]
>  

auch falsch..

Also der Kreisbogen [mm] b=\bruch{288°}{360°}*2\pi*\bruch{25}{2} [/mm]
[mm] \gdw b=20\pi [/mm] ist gleichzeitig der Umfang der Kegelgrundfläche

Umfang der Kegelgrundfläche [mm] u=2\pi*r_{Kegel} [/mm]
[mm] \gdw r_{Kegel}=10 [/mm]

Radius des Kreissegments r=h ...Höhe des Kegels

[mm] V_{Kegel}=\bruch{1}{3}\pi*10^2*\bruch{25}{2}=\bruch{1250\pi}{3}\approx 1308.99cm^3 [/mm]

> Vielen Dank

Bitte! :-)

Liebe Grüße
Andreas

Bezug
                
Bezug
Arbeitsvorbereitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Sa 28.04.2007
Autor: MatheSckell

Hallo,

>  
> Radius des Kreissegments r=h ...Höhe des Kegels
>  
> [mm]V_{Kegel}=\bruch{1}{3}\pi*10^2*\bruch{25}{2}=\bruch{1250\pi}{3}\approx 1308.99cm^3[/mm]

kann es sein das dies Falsch ist, denn eigentlich müsste doch der Radius des Kreissegemnts nicht der Höhe sondern der Seitenkantenlänge s eine Kegels entsprechen. Denn dann muss die Höhe noch mit Pytagoras berechnet werden und das Volumen beträgt: 785,4 [mm] cm^{3}. [/mm]

Viele Grüsse

Bezug
                        
Bezug
Arbeitsvorbereitung: Du hast Recht!
Status: (Antwort) fertig Status 
Datum: 10:28 Sa 28.04.2007
Autor: Loddar

Hallo MatheSckell!


Du hast völlig Recht, und ich habe ebenfalls Dein Ergebnis mit $V \ = \ [mm] 250*\pi [/mm] \ [mm] \approx [/mm] \ 785.4 \ [mm] cm^3$ [/mm] erhalten.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]