www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikArbitrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Finanzmathematik" - Arbitrage
Arbitrage < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arbitrage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Fr 29.09.2006
Autor: JannisCel

Aufgabe
Folgende Anmerkung ist mir nicht ganz klar

Ein Ein-Perioden-Modell ist arbitragefrei, falls kein Portfolio x existiert mit
$ [mm] x^{T}S_{t_{0}}=0 [/mm] $

x stellt den Vektor dar, der angibt wie in die einzelnen Wertpapiere
$ [mm] S=S_{0},...,S_{l} [/mm] $ investiert wird.



        
Bezug
Arbitrage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Fr 29.09.2006
Autor: felixf

Hallo!

> Folgende Anmerkung ist mir nicht ganz klar
>  
> Ein Ein-Perioden-Modell ist arbitragefrei, falls kein
> Portfolio x existiert mit
> [mm]x^{T}S_{t_{0}}=0[/mm]
>
>  x stellt den Vektor dar, der angibt wie in die einzelnen
> Wertpapiere
> [mm]S=S_{0},...,S_{l}[/mm] investiert wird.

Ich nehme mal an, dass mit [mm] $S_{t_0}$ [/mm] der Vektor $S$ zur Zeit [mm] $t_0$ [/mm] (Startzeit?) gemeint ist?

Die Aussage ist sicher so nicht vollstaendig, da fehlt was. Ich vermute mal sowas wie `...kein Arbitrage-Portfolio existiert...' oder halt diese Bedingung direkt ausgeschrieben, also [mm] $P(x^T S_{t_1} \ge [/mm] 0) = 1$ und [mm] $P(x^T S_{t_1} [/mm] > 0) > 0$, das man also zum Zeitpunkt 1 mit dem Portfolio fast sicher keinen Verlust hat und mit positiver Wahrscheinlichkeit sogar Gewinn.

Was ja gerade heisst: Das Modell ist genau dann arbitragefrei, wenn man nicht aus einem Einsatz von $0$ evtl. Gewinn, aber garantiert keinen Verlust machen kann.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]