Archimedisches Axiom < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe eine Frage zum Archimedischem Axiom. Dieses wird in der Analysis häufiger in Beweisen benutzt, deshalb wäre es gut wenn ich es tatsächlich ganz verstehen würde.
Eine der Folgerungen besagt, dass es zu jedem x [mm] \in \IR [/mm] n1, n2 [mm] \in \IN [/mm] gibt, wo folgendes gilt:
n1 [mm] \le [/mm] x [mm] \le [/mm] n2 gilt.
Damit gilt auch folgendes:
Für alle [mm] \varepsilon [/mm] > 0, gibt es ein n [mm] \in \IN, [/mm] sodass 1/n < [mm] \varepsilon [/mm] gilt.
Und jetzt meine Frage:
Um das ganze richtig zu verstehen, heißt das nun, dass es für jedes beliebige (aber feste!) Element [mm] \in \IR, [/mm] das größer als 0 ist, eine natürliche Zah n gibt, die 1/n echt kleiner als das beliebige aber feste Element aus [mm] \IR [/mm] gibt.
Seht es mir bitte nach, dass ich zwischen mathematischer Notation und verbaler Beschreibung hin und her wechsel. Aber damit kann ich (so finde ich) genauer Ausdrücken, was ich hier grad genau möchte.
Viele Grüße,
mathelernender
|
|
|
|
Guten Abend
> Frage zum Archimedischem Axiom
> Eine der Folgerungen besagt, dass es zu jedem x [mm]\in \IR[/mm]
> n1 , n2 [mm]\in \IN[/mm] gibt, wo folgendes gilt:
>
> n1 [mm]\le[/mm] x [mm]\le[/mm] n2 gilt.
Mit den üblichen Definitionen der Mengen [mm] \IR [/mm] (reelle Zahlen) und
[mm] \IN [/mm] (alle positiven oder ev. alle nichtnegativen ganzen Zahlen)
gilt die letztere Aussage nicht !
Ist vielleicht gemeint, dass x eine positive reelle
Zahl sein soll ?
> Damit gilt auch folgendes:
>
> Für alle [mm]\varepsilon[/mm] > 0, gibt es ein n [mm]\in \IN,[/mm] sodass
> 1/n < [mm]\varepsilon[/mm] gilt.
>
> Und jetzt meine Frage:
> Um das ganze richtig zu verstehen, heißt das nun, dass es
> für jedes beliebige (aber feste!) Element [mm]\in \IR,[/mm] das
> größer als 0 ist, eine natürliche Zahl n gibt, die 1/n
> echt kleiner als das beliebige aber feste Element aus [mm]\IR[/mm]
> gibt.
Wenn man dies noch korrekt deutsch ausdrückt, stimmt es:
Für jedes beliebige (aber feste!) Element [mm]\green{ \varepsilon \in \IR}[/mm] , das
größer als 0 ist, gibt es eine natürliche Zahl n , für die der Wert von 1/n
echt kleiner ist als das beliebige aber feste Element [mm] \green{\varepsilon} [/mm] aus [mm]\green{\IR}[/mm] .
> Seht es mir bitte nach, dass ich zwischen mathematischer
> Notation und verbaler Beschreibung hin und her wechsel.
> Aber damit kann ich (so finde ich) genauer ausdrücken, was
> ich hier grad genau möchte.
Dagegen ist gar nichts einzuwenden. Dass alle mathematischen
Aussagen in rein formaler mathematischer Notation gefasst
werden sollen, ist ein leider ziemlich weit verbreiteter und
schädlicher Irrglaube !
LG , Al-Chwarizmi
|
|
|
|