www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperAssoziative Gruppe?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Assoziative Gruppe?
Assoziative Gruppe? < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Assoziative Gruppe?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Sa 27.10.2007
Autor: Elfe

Aufgabe
Ist die Menge G = {q [mm] \in \IQ [/mm] | q > 0} zusammen mit der Verknüpfung  G x G [mm] \to [/mm] G, (x,y) [mm] \mapsto \bruch{x}{y} [/mm] eine Gruppe? Ist diese Verknüpfung assoziativ?  

Hallo,
also generell weiß ich wohl was eine Gruppe ist und was die für Eigenschaften besitzen muss. Bei dieser Aufgabe allerdings kommt eine Division vor und wir hatten das bisher nur mit Addition und Multiplikation und da bin ich mir nicht sicher, ob ich da richtig denke... Deshalb hätte ich gerne ein paar Tips wenn ich das falsch gemacht habe.

I)  für alle x,y,z  [mm] \in [/mm] G ist [mm] \bruch{x}{\bruch{y}{z}} [/mm] = [mm] \bruch{\bruch{x}{y}}{z} [/mm]    oder? Und das stimmt ja würde ich sagen.
Denn es wäre ja beides [mm] x*\bruch{1}{y} [/mm] * [mm] \bruch{1}{z} [/mm]

II) Es gibt ein e [mm] \in [/mm] G mit

1) für jedes x [mm] \in [/mm] G ist [mm] \bruch{e}{x} [/mm] = [mm] \bruch{x}{e} [/mm] = x
Habe ich die Eigenschaft so richtig verstanden und auf meinen Fall umformuliert? Weil wenn ich das so richtig gemacht habe, dann würde ich sagen, dass das eben so nicht stimmt. Dass es kein neutrales Element e gibt, für dass diese Eigenschaft erfüllt ist. Aber ich mach erstmal trotzdem weiter

2) für jedes x [mm] \in [/mm] G gibt es ein x' [mm] \in [/mm] G mit x'*x = x*x' = e. Wobei x' das Inverse von x ist.
Da würde ich dann sagen, dass es ja gehen würde. Also [mm] \bruch{x}{1} [/mm] * [mm] \bruch{1}{x} [/mm] = [mm] \bruch{1}{x} [/mm] * [mm] \bruch{x}{1} [/mm] = e

Dann wäre das neutrale Element auch 1. Jetzt ist die Frage, ob ich das auch wirklich richtig angewendet hab? Würd mich freuen wenn mir jemand was dazu sagen könnte.

Und auf die Frage, ob die Verknüpfung assoziativ ist, würde ich sagen ja. Dadurch, dass ich das in der ersten Eigenschaft dann gezeigt habe ?

lg Elfe

        
Bezug
Assoziative Gruppe?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Sa 27.10.2007
Autor: koepper

Hallo,

du machst dir leider viel zu viel Arbeit: Beantworte erst die Frage nach der Assoziativität.

> I)  für alle x,y,z  [mm]\in[/mm] G ist [mm]\bruch{x}{\bruch{y}{z}}[/mm] =
> [mm]\bruch{\bruch{x}{y}}{z}[/mm]    oder? Und das stimmt ja würde
> ich sagen.

oh weh... probier es mal mit einigen Beispielzahlen aus.

Da die Gruppenoperation assoziativ sein muß, hat sich damit die Frage auch erledigt.
Die anderen Bedingugnen für eine Gruppe müssen dann nicht mehr geprüft werden, wenn eine schon versagt hat.

LG
Will

Bezug
                
Bezug
Assoziative Gruppe?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 Sa 27.10.2007
Autor: Elfe

okay okay, mir ist es selbst peinlich ;-) Irgendwie fürchte ich, dass mich das ganze mathe immer weiter zu einem einzigen blackout führt.

danke für den hinweis

lg Elfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]