Asymptote < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:15 Di 19.04.2005 | Autor: | Kirke85 |
Wenn man bei den Asymptoten das Verhalten für [mm] x\to \pm \infty [/mm] bestimmen will, so schaut man sich ja den Grad Z(x) und N(x) an. Wenn Z(x)>N(x) ist, muss man eine Polynomdivision durchführen. Dieses habe ich auch getan, für die Aufgabe:
(x²-3x+4):(3x-3)= [mm] \bruch{1}{3}x- \bruch{2}{3}+ \bruch{2}{3x-3}
[/mm]
Dann ist ja [mm] \bruch{1}{3}x- \bruch{2}{3} [/mm] die Asymptote.
Welche Bedeutung hat aber nun der Rest, also [mm] \bruch{2}{3x-3} [/mm] , bzw. was sagt dieser Rest aus?
|
|
|
|
Hi, Kirke,
das ist rechnerisch die Differenz zwischen den Termen der gegebenen Funktion und der Asymptote,
anschaulich ist das sozusagen der (in y-Richtung gemessene) "Abstand" zwischen dem Graphen von f und der Asymptote. Dieser Abstand wird für immer größere x selbst immer kleiner, da sich ja der Graph der Asymptote nähert.
Der sog. "Rest" bei der Polynomdivision geht für x [mm] \to \infty [/mm] gegen 0.
|
|
|
|