www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAsymptoteN (schwerer als e^x)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - AsymptoteN (schwerer als e^x)
AsymptoteN (schwerer als e^x) < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

AsymptoteN (schwerer als e^x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Mo 09.01.2006
Autor: Phoney

Guten Abend.

Es ist ja so, dass die Funktion g(x) für x-> [mm] \pm\infty [/mm] Asymtptoten hat.
Hier meine Frage. Wie wäre die Funktion der Asymptote für
f(x) = [mm] x^2*e^{-0,5x} [/mm]

Die positive X-Achse wäre Asymtptote für [mm] x->\infty [/mm]

Und für die Minus X? Was wäre da die Asymptote?

Grüße

        
Bezug
AsymptoteN (schwerer als e^x): (+unendlich) × (+unendlich)
Status: (Antwort) fertig Status 
Datum: 20:00 Mo 09.01.2006
Autor: Loddar

Hallo Johann!


> Hier meine Frage. Wie wäre die Funktion der Asymptote für
> f(x) = [mm]x^2*e^{-0,5x}[/mm]
>  
> Die positive X-Achse wäre Asymtptote für [mm]x->\infty[/mm]

[ok] Richtig!



> Und für die Minus X? Was wäre da die Asymptote?

Gegen welchen "Wert" geht denn die Funktion $g(x)_$ für [mm] $x\rightarrow-\infty$ [/mm] ?

Sowohl der erste Faktor [mm] $x^2$ [/mm] als auch der Faktor [mm] $e^{-0.5*x}$ [/mm] streben gegen [mm] $+\infty$ [/mm] .

Damit gilt dieser Grenzwert auch für die gesamte Funktion. Eine konkrete Asymptote (sei es eine Gerade oder andere "einfachere" Näherungsfunktion) gibt es hier nicht.


Gruß
Loddar


Bezug
                
Bezug
AsymptoteN (schwerer als e^x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Mo 09.01.2006
Autor: Phoney

hallo.
> Damit gilt dieser Grenzwert auch für die gesamte Funktion.
> Eine konkrete Asymptote (sei es eine Gerade oder andere
> "einfachere" Näherungsfunktion) gibt es hier nicht.

Achso, ich dachte, dass eine Asymptote genau wie eine Einhüllende möglich wäre, so habe ich es mir vorgestellt.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]