www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmen und DatenstrukturenAsymptotische Abschätzungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algorithmen und Datenstrukturen" - Asymptotische Abschätzungen
Asymptotische Abschätzungen < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptotische Abschätzungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 So 30.04.2006
Autor: Milka_Kuh

Hallo!

Ich weiß bei solchen Aufgaben nicht, wie ich da vorzugehen habe, um die Behauptungen zu zeigen bzw. zu widerlegen. Ich bitte deshalb zu Hilfe. Vielleicht kann mir jemand hilfreiche Tipps geben.
Ich soll folg. Behauptungen beweisen oder widerlegen:

1. f(n) + g (n) = Teta (max(f(n),g(n)))
2.Wenn f(n) = O(g(n)) ist, so auch [mm] 2^{f(n)} [/mm] = [mm] O(2^{g(n)}) [/mm]

Hier ist mit O die Groß-O-Notation gemeint, also dass die Funktion f(n) durch eine größere Funktion g(n) dominiert wird, f(n)  [mm] \le [/mm] c g(n) für eine Konstante c.
Die Teta-Notation bedeutet, dass ein Funktion von links und von rechts von g(n) eingeschränkt wird, also    a g(n) [mm] \le [/mm] f(n) [mm] \le [/mm] b g(n) für a,b Konstanten.

Vielen Dank!

Gruß, Milka

        
Bezug
Asymptotische Abschätzungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 So 30.04.2006
Autor: xamurai

f(n) + g (n) = Teta (max(f(n),g(n)))


==>
f(n) + g (n)   = O(max(f(n),g(n)))
und

(max(f(n),g(n))) = O(f(n) + g (n))

-----
du brauchst da  c1  und c2

sei z.B. f = max (f,g)

dann muss es c1 , c2 geben so dass
f +g <= c1.(f)
und
f <= c2.(f+g)
f <= c2.(f) + c2.(g)

zB : für |f| >= |g|    und  c2 >=2

ist   f <= c2.(f) +c2.(g)

für c1 >= 2 ist
f + g <= c1.(g)

da f = max(f,g)

=> es exist. c1,c2 >0  , [mm] n_0 [/mm]  aus IN  so dass für alle n >= [mm] n_0 [/mm]

f+g = Theta(max(f,g))


!!! aber diese ganze  geschichte müss von einem mathen Student(in) überprüfen werden :))



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]