www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAsymptotische Stabilität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Asymptotische Stabilität
Asymptotische Stabilität < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptotische Stabilität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Do 25.08.2011
Autor: Harris

Aufgabe
[mm] A:=\pmat{ -5 & 0 & 3 \\ 0 & -1 & 0 \\ 3 & 0 & -5} [/mm]

a) Zeigen Sie, dass die Ruhelage 0 für das System x'=Ax stabil ist.
b) Weiterhin sei [mm] $b:\IR\rightarrow\IR^3$ [/mm] stetig. Zeigen Sie, dass jede Lösung $y$ der Gleichung $y'=Ay+b(t)$ asymptotisch stabil ist, indem Sie zeigen, dass für zwei Lösungen $y$ und $z$ immer gilt:
[mm] lim_{t\rightarrow\infty} \parallel z(t)-y(t)\parallel=0 [/mm]

Hi!
Der erste Teil ist klar, da kommt als allgemeine Lösung
[mm] \lambda_1\vektor{-1 \\ 0 \\ 1}exp(-8t)+\lambda_2\vektor{1 \\ 0 \\ 1}exp(-2t)+\lambda_3\vektor{0 \\ 1 \\ 0}exp(-t) [/mm]
raus und da die Matrix nur Eigenwerte mit negativem Realteil hat, ist die Lösung asymptotisch stabil ist.

Aber was ist bei der zweiten? Ich habe da leider gar keinen Ansatz. Bezüglich welcher Norm betrachtet man das denn überhaupt? Supremumsnorm?

Grüße, Harris




        
Bezug
Asymptotische Stabilität: Tipp
Status: (Antwort) fertig Status 
Datum: 21:37 Do 25.08.2011
Autor: DerSpunk

Hi Harris,

schau dir mal an welche Dgl. die Funktion [mm]x=z-y[/mm] löst, wobei [mm]y,\ z[/mm] Lösungen der Dgl. [mm]y'=Ay+b(t)[/mm] sind.

Beste Grüße
Spunk

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]