www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAttraktivität/Stabilität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Attraktivität/Stabilität
Attraktivität/Stabilität < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Attraktivität/Stabilität: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:49 Fr 07.07.2006
Autor: Milka_Kuh

Aufgabe
Gegeben: Das ebene autonome System in Polarkoordinaten:

r'=r(1-r),  [mm] \mu'=\mu(2\pi-\mu) [/mm]    wobei: [mm] (r\ge [/mm] 0, 0 [mm] \le \mu [/mm] < [mm] 2\pi) [/mm]

Dieses kann elementar gelöst werden.
Skizziere das Phasenporträt des Systems in karthesischen Koordinaten und zeige: Der Gleichgewichtspunkt (1,0) ist attraktiv, aber nicht stabil. Bestimme den Anziehungsbereich.

Hallo,

Mein erstes Problem bei dieser Aufgabe ist, dass ich mir unter diesem System grafisch nichts vorstellen kann. Deshalb versteh ich auch nicht, wie ich hier auf das Phasenporträt kommen soll. Was bedeutet hier in karthesischen Koordinaten? Unter einem Phasenporträt versteh ich eine grafische Veranschaulichung, wie die Lösungen dieser Diff.gleichungssystem verlaufen...

Ein Gleichgewichtspunkt ist eine Nullstelle. Wenn die Nullstelle (1,0) attraktiv sein soll, dann muss es ja eine offene Umgebung U geben, sodass für alle [mm] \lambda \in [/mm] U: sup [mm] J_{\lambda}= \infty, \limes_{t\rightarrow\infty} u_{\lambda}(t) [/mm] = (1,0), wobei [mm] u_{\lambda}: J_{\lambda} \to [/mm] D die maximale Lösung des AWP ist. Nicht stabil bedeutet, dass [mm] |u_{\lambda}(t)-(1,0)| [/mm] > [mm] \epsilon [/mm] ist, d.h. ich verlasse die Umgebung des Gleichgewichtspunkts.
Aber wie zeige ich das hier konkret angewandt auf meine Aufgabe? Wie muss ich hier das autonome System umformen? Mir fällt es schwer, diese Umgebung zu finden.

Danke, milka

        
Bezug
Attraktivität/Stabilität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mi 12.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]