www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenAuf Diffbarkeit untersuchen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Auf Diffbarkeit untersuchen
Auf Diffbarkeit untersuchen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auf Diffbarkeit untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Mo 11.06.2007
Autor: peter_d

Aufgabe
[mm] $\text{In welchen Punkten }(a,b)\in\mathbb{R}^2\text{ ist}$ [/mm]
[mm] $f:\mathbb{R}^2\to\mathbb{R}\quad\text{ def. durch }\quad f(x,y):=\left\{\begin{array}{rr}\dfrac{x^3}{\sqrt{x^2+y^2}}&\text{falls }(x,y)\not= (0,0)\\0&\text{falls }(x,y)=(0,0)\end{array}\right.$ [/mm]
[mm] $\text{differenzierbar?}$ [/mm]

Hallo.

Ich habe so begonnen:

Da $f$ aus diffbaren Funktionen zusammengesetzt ist und der Nenner für [mm] $(x,y)\not= [/mm] (0,0)$ nicht null ist, ist $f$ für alle [mm] $(x,y)\not= [/mm] (0,0)$ diffbar.

Untersuchung auf Diff'barkeit im Punkte $(0,0)$:

(1) Ist $f$ in $(0,0)$ stetig?
[mm] $\lim_{(x,y)\to(0,0)}f(x,y) [/mm] = [mm] \lim_{r\to 0}f(x=r*\cos\varphi, y=r*\sin\varphi) [/mm] = [mm] \dfrac{r^3*\cos^3\varphi}{|r|}$ [/mm]

Hier hapert es jetzt erstmal.
Eigentlich ist diese Funktion ja im Nullpunkt nicht definiert? Oder kann ich den Betrag trotzdem wegkürzen und sagen, dass der Limes dann $0$ ist und $f$ somit in $(0,0)$ stetig ist?
Wenn nicht, muss ich dann davon ausgehen, dass $f$ in $(0,0)$ nicht stetig und somit auch nicht diff'bar ist?

Wär gut, wenn mich mal einer aufklären könnte.

Gruß
Peter



        
Bezug
Auf Diffbarkeit untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Mo 11.06.2007
Autor: Somebody


> [mm]\text{In welchen Punkten }(a,b)\in\mathbb{R}^2\text{ ist}[/mm]
>  
> [mm]f:\mathbb{R}^2\to\mathbb{R}\quad\text{ def. durch }\quad f(x,y):=\left\{\begin{array}{rr}\dfrac{x^3}{\sqrt{x^2+y^2}}&\text{falls }(x,y)\not= (0,0)\\0&\text{falls }(x,y)=(0,0)\end{array}\right.[/mm]
>  
> [mm]\text{differenzierbar?}[/mm]
>  Hallo.
>  
> Ich habe so begonnen:
>  
> Da [mm]f[/mm] aus diffbaren Funktionen zusammengesetzt ist und der
> Nenner für [mm](x,y)\not= (0,0)[/mm] nicht null ist, ist [mm]f[/mm] für alle
> [mm](x,y)\not= (0,0)[/mm] diffbar.
>  
> Untersuchung auf Diff'barkeit im Punkte [mm](0,0)[/mm]:
>  
> (1) Ist [mm]f[/mm] in [mm](0,0)[/mm] stetig?
>  [mm]\lim_{(x,y)\to(0,0)}f(x,y) = \lim_{r\to 0}f(x=r*\cos\varphi, y=r*\sin\varphi) = \dfrac{r^3*\cos^3\varphi}{|r|}[/mm]
>  
> Hier hapert es jetzt erstmal.
>  Eigentlich ist diese Funktion ja im Nullpunkt nicht
> definiert?

Doch, doch: die Funktion [mm]f[/mm] ist im Punkt [mm](0,0)[/mm] schon definiert, ihr Wert wurde (etwas willkürlich vielleicht: aber das ist absolut zulässig) gleich [mm]0[/mm] festgelegt.

> Oder kann ich den Betrag trotzdem wegkürzen und
> sagen, dass der Limes dann [mm]0[/mm] ist und [mm]f[/mm] somit in [mm](0,0)[/mm]
> stetig ist?

Es ist richtig, dass Dein Limes für [mm]r\rightarrow 0+[/mm] existiert und gleich [mm]0[/mm] ist. - Und, ja: das heisst, [mm]f[/mm] ist auch an der Stelle [mm](0,0)[/mm] stetig. (Bem: Du musst nur den Limes für positive [mm]r[/mm] betrachten: das Vorzeichen von [mm]x,y[/mm] wird vom [mm]\cos\varphi[/mm] beigetragen. Somit ist also hier ohnehin [mm]|r|=r[/mm].)

>  Wenn nicht, muss ich dann davon ausgehen, dass [mm]f[/mm] in [mm](0,0)[/mm]
> nicht stetig und somit auch nicht diff'bar ist?

Ja klar: wenn [mm]f[/mm] an der Stelle [mm](0,0)[/mm] nicht stetig wäre (was aber nicht zutrifft), dann wäre [mm]f[/mm] natürlich dort auch nicht differenzierbar (wenn meine Oma Räder hätte, dann ...)

>  
> Wär gut, wenn mich mal einer aufklären könnte.

Nun, nachdem Du Dich davon überzeugt hast, dass [mm]f[/mm] auch an der Stelle [mm](0,0)[/mm] stetig ist, musst Du also noch prüfen, ob [mm]f[/mm] dort sogar differenzierbar ist (Du hättest natürlich auch gleich die Differenzierbarkeit ins Visier nehmen können...)

Bezug
                
Bezug
Auf Diffbarkeit untersuchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Mo 11.06.2007
Autor: peter_d

Gut, danke schon mal für die Antwort.
Dann machen wir mal weiter :-)

[mm] $\text{\underline{Variante (1)}}$ [/mm]

Ist f in (0,0) partiell diff'bar?
Ja, grad f(0,0) = (0,0), denn
[mm] $f_x(0,0) [/mm] = [mm] \lim_{(x,y)\to(0,0)}\dfrac{f(x,0)-f(0,0)}{x} [/mm] = [mm] x^2 [/mm] = 0$
Ebenso [mm] $f_y(0,0) [/mm] = 0$

Sind die partiellen Ableitungen von f in (0,0) stetig?
[mm] $f_x(x,y) [/mm] = [mm] \dfrac{x^2(2x^2+3y^2)}{\sqrt{(x^2+y2^)^3}}$ [/mm] für [mm] $(x,y)\not=0$ [/mm]
[mm] $\lim_{(x,y)\to(0,0)}f_x(x,y) [/mm] = [mm] \lim_{r\to0} r*\cos^2\varphi*(2*\cos^2\varphi+3*\sin^2\varphi) [/mm] = 0$
und
[mm] $\lim_{(x,y)\to(0,0)}f_x(x,y) [/mm] = [mm] \lim_{r\to0}r^2*\cos^3\varphi*\sin\varphi [/mm] = 0$
=> f ist in (0,0) diff'bar

[mm] $\text{\underline{Variante (2)}}$ [/mm]
Ich geh' gleich auf die Definition zurück:
[mm] $\lim_{(x,y)\to(0,0)}\dfrac{\dfrac{x^3}{\sqrt{x^2+y^2}}-f(0,0)-f_x(0,0)-f_y(0,0)}{|(x,y)|}$ [/mm]
$= [mm] \lim_{r\to0}\dfrac{\dfrac{r^3*\cos^3\varphi}{r}}{r}=r\cos^3\varphi [/mm] = 0$
=> Limes existiert, also ist f im Nullpunkt diff'bar.

Mit dem Krams von vorhin folgt dann, dass f überall diff'bar ist.

Kann man das so machen? Sind beide Varianten richtig?

Gruß
Peter

Bezug
                        
Bezug
Auf Diffbarkeit untersuchen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 11.06.2007
Autor: Somebody


> Gut, danke schon mal für die Antwort.
>  Dann machen wir mal weiter :-)
>  
> [mm]\text{\underline{Variante (1)}}[/mm]
>  
> Ist f in (0,0) partiell diff'bar?
>  Ja, grad f(0,0) = (0,0), denn
>  [mm]f_x(0,0) = \lim_{(x,y)\to(0,0)}\dfrac{f(x,0)-f(0,0)}{x} = x^2 = 0[/mm]
>  
> Ebenso [mm]f_y(0,0) = 0[/mm]
>  
> Sind die partiellen Ableitungen von f in (0,0) stetig?
>  [mm]f_x(x,y) = \dfrac{x^2(2x^2+3y^2)}{\sqrt{(x^2+y2^)^3}}[/mm] für
> [mm](x,y)\not=0[/mm]
>  [mm]\lim_{(x,y)\to(0,0)}f_x(x,y) = \lim_{r\to0} r*\cos^2\varphi*(2*\cos^2\varphi+3*\sin^2\varphi) = 0[/mm]
>  
> und
>  [mm]\lim_{(x,y)\to(0,0)}f_x(x,y) = \lim_{r\to0}r^2*\cos^3\varphi*\sin\varphi = 0[/mm]
>  
> => f ist in (0,0) diff'bar
>  
> [mm]\text{\underline{Variante (2)}}[/mm]
>  Ich geh' gleich auf die
> Definition zurück:
>  
> [mm]\lim_{(x,y)\to(0,0)}\dfrac{\dfrac{x^3}{\sqrt{x^2+y^2}}-f(0,0)-f_x(0,0)-f_y(0,0)}{|(x,y)|}[/mm]
>  [mm]= \lim_{r\to0}\dfrac{\dfrac{r^3*\cos^3\varphi}{r}}{r}=r\cos^3\varphi = 0[/mm]
>  
> => Limes existiert, also ist f im Nullpunkt diff'bar.
>  
> Mit dem Krams von vorhin folgt dann, dass f überall
> diff'bar ist.
>  
> Kann man das so machen? Sind beide Varianten richtig?

Also in beiden Fällen verwendest Du, richtigerweise, dass im Punkt [mm](0,0)[/mm] die partiellen Ableitungen [mm]f_x, f_y[/mm] existieren und stetig sind: daraus folgt, dass [mm]f[/mm] im Punkt [mm](0,0)[/mm] diff'bar ist, wie Du offenbar weisst.
Der Weg mit der Richtungsableitung, der [mm]f'(x,y)[/mm] auf die Form [mm]r\cos^3(\varphi)[/mm] bringt, ist bei dieser Funktion, denke ich, einfacher. Als Spezialfälle sind die partiellen Ableitungen [mm]f_x, f_y[/mm] ja in der Richtungsableitung enthalten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]