www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikAufg gelöst nur nicht logisch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Aufg gelöst nur nicht logisch
Aufg gelöst nur nicht logisch < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufg gelöst nur nicht logisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Mo 27.08.2012
Autor: YKSakamoto

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich hab folgende Aufgabe:

Karl-Heinz hat im Urlaub 12 Souveniers erstanden, die er seinen drei Kegelbrüdern schenken will. Der erste soll n1, der zweite n2, der dritte n3 Souveniers erhalten (n1+n2+n3=12).

a) Wie viele Möglichkeiten gibt es, wenn n1, n2 und n3 vor der Verteilung der Souveniers festgelegt werden?

(Hier ist es ja so, das ich den ersten betracht. Dann denn zweiten unter der Bedingung das der erst schon was bekommen hat, Dann der dritte unter der Bedingung das der erst und zweite was bekommen hat. Hätte ich nicht einfach gleich schreiben können (12 ü n1*n2*n3) !?)

Lösung: ü=über
  (12 ü n1)*(12-n1 ü n2)*(12-n1-n2 ü n3)
=12!/n1!(12-n1)!*(12-n1)!/n2(12-n1-n2)!*(12-n1-n2)!/n3!(12-n1-n2-n3)!
=12!/n1!*n2!*n3!*(12-n1-n2-n3)!
=12 ü n1*n2*n3

b) Wie viele Möglichkeiten gibt es, wenn n1, n2, n3 Element {0,1,...,12} beliebig gewählt werden können?

(Jetzt wird es wirklich interessant. Ich verstehe die Lösung vom Tutorium gar nicht. Wie kommt man da auf ne Zahl!?)

Lösung:
n1+n2+n3=12
0 größergleich n1;n2;n3 größer gleich 12
Summenzeichen (drunter n1+n2+n3=12) dahinter (12 über n1,n2,n3)=531441

        
Bezug
Aufg gelöst nur nicht logisch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:14 Mo 27.08.2012
Autor: Valerie20

Hi!


Verwende doch den Formeleditor.
Das so zu lesen ist sehr anstrengend. Unter folgendem Link kannst du sehen, wie man die Formeln hier eingibt:

https://matheraum.de/mm



Valerie

Bezug
        
Bezug
Aufg gelöst nur nicht logisch: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Mo 27.08.2012
Autor: Teufel

Hi!

Das Ergebnis in der a) ist nicht [mm] \vektor{12 \\ n_1*n_2*n_3}, [/mm] sondern [mm] \vektor{12 \\ n_1,n_2,n_3}. [/mm] Das ist ein sogenannter Multinomialkoeffizient und er bedeutet [mm] \frac{12!}{n_1!*n_2!*n_3!}. [/mm]

In der Aufgabe b) will man nun über alle diese Multinomialkoeffizienten summieren. Nun ist es hilfreich den multinomialen Lehrsatz zu kennen, der eine Verallgemeinerung des binomischen Lehrsatzes darstellt.

Es gilt [mm] (a_1+...+a_k)^n=\summe_{i_1+i_2+...+i_k=n}^{}\vektor{n \\ i_1, ..., i_k}a_1^{i_1}*...*a_k^{i_k}. [/mm] Daraus folgt dann dein Ergebnis, was auch nichts anderes als [mm] 3^{12}=(1+1+1)^{12} [/mm] ist. Darauf kann man allerdings auch anders kommen. Für Souvenir 1 gibt es 3 mögliche Empfänger. Für Souvenir 2, 3, ...., 12 auch. Daher gibt es insgesamt [mm] 3^{12} [/mm] Möglichkeiten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]