Aufgabe #28 < Wettbewerbe < Schule < Mathe < Vorhilfe
|
Status: |
(Übungsaufgabe) Übungsaufgabe | Datum: | 15:43 So 27.03.2005 | Autor: | Hanno |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo an alle!
Es folgen einige Ungleichungen. Ich habe sie selbst noch nicht gelöst, kann ihren Schwierigkeitsgrad also nur schwer beurteilen; aber wir schaffen das schon
Seien $x,y,z$ positive, reelle Zahlen. Zeige, dass
$\prod\left(\frac{x(x+y+z)}{(x+y)(x+z)}\right)^x \leq \left(\frac{\left(\summe yz\right)^2}{4xyz(x+y+z)\right) ^{x+y+z}$
gilt, wobei die Summe und das Produkt zyklisch zu verstehen sind.
Liebe Grüße,
Hanno
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:43 Sa 28.05.2005 | Autor: | moudi |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo Hanno
Ich habe nach vielen Versuchen diese Aufgabe endlich lösen können.
Dazu beweise ich die folgenden beiden Ungleichungen, die dann zusammengesetzt die Behauptung ergeben:
$ \prod_{\mathrm{zyk}}\left(\frac{x(x+y+z)}{(x+y)(x+z)}\right)^x \leq \left(\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{(x+y)(x+z)(y+z)}\right)^{x+y+z} \leq\left(\frac{(xy+xz+yz)^2}{4xyz(x+y+z)\right) ^{x+y+z}$
Zur ersten Ungleichung
Ich verwende wieder das Theorem über konvexe Funktionen aus meiner Antwort zu Aufgabe 30. Ich betrachte die Funktion f(t)=ln(t), dann ist $f''(t)<0$ und die "Gewichte" [mm] $\lambda_1=\frac{x}{x+y+z}$, $\lambda_2=\frac{y}{x+y+z}$, $\lambda_3=\frac{z}{x+y+z}$, [/mm] sowie die Argumente [mm] $t_1=x(y+z)$, $t_2=y(x+z)$, $t_3=z(x+y)$.
[/mm]
Wegen [mm] $\sum_{i}\lambda_i f(t_i)\leq f(\sum_i \lambda_i t_i)$ [/mm] folgt
[mm] $\sum_{\mathtm{zyk}}\frac{x}{x+y+z}\ln(x(y+z)) \leq \ln\left(\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{x+y+z}\right)$
[/mm]
Multipliziert man diese Ungleichung mit (x+y+z) und exponiert sie anschliessend, so erhält man
[mm] $\prod_{\mathtm{zyk}}(x(y+z))^x \leq \left(\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{x+y+z}\right)^{x+y+z}$
[/mm]
Jetzt multipliziert man noch mit [mm] $\left(\frac{x+y+z}{(x+y)(x+z)(y+z)}\right)^{x+y+z}= \prod_{\mathtm{zyk}}\left(\frac{x+y+z}{(x+y)(x+z)(y+z)}\right)^{x}$ [/mm] und man erhält
[mm] $\prod_{\mathtm{zyk}}\left(\frac{x(x+y+z)}{(x+y)(x+z)}\right)^{x}\leq \left(\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{(x+y)(x+z)(y+z)}\right)^{x+y+z}$
[/mm]
die gewünschte erste Ungleichung.
Zur zweiten Ungleichung
Der Exponent x+y+z verändert die Ungleichung nicht, deshalb genügt es
[mm] $\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{(x+y)(x+z)(y+z)} \leq \frac{(xy+xz+yz)^2}{4xyz(x+y+z)}$
[/mm]
zu zeigen. Man sieht dass jede Permutation der Variablen x,y,z die Ungleichung invariant lässt, deshalb darf man [mm] $x\leq y\leq [/mm] z$ annehmen.
Multipliziert man die Ungleichung mit ihren Nennern multipliziert alles aus und bringt alles auf die rechte Seite, so erhält man (CAS sei dank) die äquivalente Ungleichung
[mm] $\sum_{\mathtm{zyk}}x^4y^3+x^3y^4-x^4y^2z-x^2y^4z-2x^3y^3z+x^3y^2z^2+x^2y^3z^2 \geq [/mm] 0$
Dies lässt sich faktorisieren zu
[mm] $\sum_{\mathtm{zyk}}x^2y^2(x+y)(z-x)(z-y)\geq [/mm] 0$ oder ausgeschrieben
[mm] $x^2y^2(x+y)(z-x)(z-y)+ y^2z^2(y+z)\underbrace{(x-y)(x-z)}_{(y-x)(z-x)}+ x^2z^2(x+z)\underbrace{(y-z)}_{-(z-y)}(y-x)\geq [/mm] 0$
Man sieht, nur der letzte Summand ist negativ, wenn [mm] $x\leq y\leq [/mm] z$, deshalb fasse ich die letzten beiden Summande zusammen und klammere [mm] $z^2(y-x)$ [/mm] aus
[mm] $x^2y^2(x+y)(z-x)(z-y)+ z^2(y-x)\underbrace{\left(y^2(y+z)(z-x)-x^2(x+z)(z-y)\right)}_{\mathtm{positiv!}}$
[/mm]
Man sieht, dass die Ungleichung gültig ist.
mfG Moudi
|
|
|
|