www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeAufgabe #72 (IrMO),(Folgen)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathematik-Wettbewerbe" - Aufgabe #72 (IrMO),(Folgen)
Aufgabe #72 (IrMO),(Folgen) < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #72 (IrMO),(Folgen): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 01:26 Mi 27.07.2005
Autor: Hanno

Hallo an alle!

Die Folge [mm] $(a_n)$ [/mm] ist durch [mm] $a_1=1, a_{2n}=a_n$ [/mm] und [mm] $a_{2n+1}=a_{2n}+1$ [/mm] definiert. Finde den maximalen Wert unter den Gliedern [mm] $a_1,...,a_{1989}$ [/mm] und die Anzahl, wie oft er auftritt.


Liebe Grüße,
Hanno

        
Bezug
Aufgabe #72 (IrMO),(Folgen): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mi 27.07.2005
Autor: KaiAhnung

Hallo Hanno!

> Die Folge [mm](a_n)[/mm] ist durch [mm]a_1=1, a_{2n}=a_n[/mm] und
> [mm]a_{2n+1}=a_{2n}+1[/mm] definiert. Finde den maximalen Wert unter
> den Gliedern [mm]a_1,...,a_{1989}[/mm] und die Anzahl, wie oft er
> auftritt.

In der Menge [mm]\{a_1,a_2,...,a_{2^n-1}\}[/mm] sind genau diejenigen Folgenglieder n-1, deren Index eine Darstellung als [mm]2^n-1-2^j[/mm] mit [mm]0 \le j < n[/mm] hat. Desweiteren ist [mm]a_{2^n-1}=n[/mm]. Alle weiteren Folgenglieder sind kleiner.


Beweis:
Ind.-Anfang:

[mm]\{a_1,a_2,a_3\}=\{1,1,2\}[/mm]

Ind.-Schritt:

Für [mm]\{a_1,a_2,...,a_{2^n-1}\}[/mm] gelte die Voraussetzung.

[mm]a_{2^{n+1}-1}=a_{2\cdot{}(2^n-1)+1}=a_{2^n-1}+1=n+1[/mm]

[mm]a_{2^{n+1}-1-2^0}=a_{2^{n+1}-2}=a_{2\cdot{}(2^n-1)}=a_{2^n-1}=n[/mm]

[mm]a_{2^{n+1}-1-2^n}=a_{2^n-1}=n[/mm]

Für [mm]0 < k < 2^{n-1}[/mm] ist
[mm]a_{2^{n+1}-2-2k}=a_{2\cdot{}(2^{n}-1-k)}=a_{2^{n}-1-k} \le (n-1)[/mm].
und
[mm]a_{2^{n+1}-2-2k+1}=a_{2\cdot{}(2^{n}-1-k)+1}=a_{2^{n}-1-k}+1[/mm]
Ist k keine 2er-Potenz, so ist der Term kleiner oder gleich n-1.
Für 2er Potenzen ergibt sich [mm]a_{2^{n+1}-1-2^{j+1}}=a_{2\cdot{}(2^{n}-1-2^j)+1}=a_{2^{n}-1-2^j}+1=n[/mm]
([mm]1\le j+1 < n+1[/mm])

Damit sind alle Folgenglieder in [mm]\{a_1,a_2,...,a_{2^{n+1}-1}\}[/mm] abgedeckt. Die Bedingung gilt somit auch für n+1.

Der maximale Wert in [mm]\{a_1,a_2,...,a_{2^{11}-2}\}[/mm] ist folglich 10.
Für alle j mit [mm]6 \le j \le 10[/mm] liegt [mm]a_{2^{11}-1-2^j}[/mm] in dem fraglichen Bereich. Daher kommt die 10 genau [mm]10-6+1=7[/mm] mal vor.

Ganz schön umständlich, muss ich zugeben, aber die Aufgabe ist auch nicht einfach.

Könnte sein, dass ein paar Flüchtigkeitsfehler dabei sind, aber prinzipiell müsste es so funktionieren.

MfG
Jan

Bezug
                
Bezug
Aufgabe #72 (IrMO),(Folgen): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:50 So 14.08.2005
Autor: Stefan

Hallo Jan!

Ich glaube ich brauche länger um deine Lösungen nachzuvollziehen (was aber an mir liegt und sicherlich nicht an der sehr guten Darstellung der Lösung) als du für das Finden der Lösungen selbst benötigst. ;-)

Also: Ich konnte keinen Fehler finden und bin begeistert! [huepf]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]