www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieAufgabe: Monotone Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Aufgabe: Monotone Konvergenz
Aufgabe: Monotone Konvergenz < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe: Monotone Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Sa 08.11.2014
Autor: MeineKekse

Aufgabe
Sei [mm] f: \IR \to \IR^{+}\cup{\infty} [/mm] messbar und [mm]\integral{f(x) d\lambda} < \infty [/mm] Zeigen Sie, dass für [mm] \alpha > 0 [/mm] gilt:

[mm] \summe_{n=1}^{ \infty }n^{-\alpha}f(nx) <\infty \ \ \ \ \ \lambda-fast \ ueberall[/mm]

Hi,

leider komme ich nicht so recht weiter. In der Aufgabenübeschrift steht ja bereits, dass man den Satz der monotonen Konvergenz verwenden sollte. Jetzt weiß ich leider nicht so recht wie ich meine monotone Funktionsfolge definieren soll um ans Ziel zu gelangen. Vielleicht kann mir ja jemand einen Tipp geben und ich versuch mich dann mal daran weiter.


Gruß

        
Bezug
Aufgabe: Monotone Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Sa 08.11.2014
Autor: andyv

Hallo,

beachte zunächst, dass die Trafo-Formel für alle natürlichen Zahlen n
$ [mm] n\integral{f(nx) \mathrm{d}\lambda(x)} [/mm] =c < [mm] \infty [/mm] $ mit einem $c [mm] \in \IR$ [/mm] (unabhängig von n) liefert.

Die Behauptung folgt nun aus dem Satz über mon. Konvergenz, und $ [mm] \summe_{n=1}^{ \infty }n^{-\alpha-1}<\infty$, [/mm] wie man mit dem Integralvergleichskriterium leicht überprüft.

Liebe Grüße

Bezug
                
Bezug
Aufgabe: Monotone Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:48 Sa 08.11.2014
Autor: MeineKekse

Top, danke.

Ich glaube damit bekomme ich es hin.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]