www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungAufgabe partielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Aufgabe partielle Integration
Aufgabe partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Mo 22.12.2008
Autor: larifari

Aufgabe
[mm] \integral \bruch{e^{x}+cosx}{e^{2x}}dx [/mm]

So jetzt hab ich ein Problem bei obiger Aufgabe.

Zunächst habe ich das Ganze umgeschrieben:

[mm] \integral (e^{x}+cosx)*e^{-2x}dx [/mm]

Das ganze möchte ich durch partielle Integration lösen. (wäre Substitution auch möglich?)

Zunächst also u´= [mm] (e^{x}+cosx), v=e^{-2x} [/mm]

Dann komm ich auf folgendes:

[mm] \integral (e^{x}+cosx)*e^{-2x}dx [/mm] = [mm] (e^{x}-sinx)*e^{-2x}-\integral (e^{x}-sinx)*-2e^{-2x} [/mm]

Hoffe soweit erstmal ok?

[mm] \integral (e^{x}-sinx)*(-2e^{-2x}) [/mm] hab ich dann zusammenefasst und komme auf [mm] \integral2e^{-x}sinx [/mm] !?

Das ausgerechnet sollte [mm] -\bruch {1}{4}e^{-x}(cosx+sinx) [/mm] ergeben?

Jetzt habe ich folgendes stehen, falls es überhaupt stimmt:

[mm] (e^{x}-sinx)*e^{-2x}-(-\bruch {1}{4}e^{-x}(cosx+sinx)) [/mm]

Wie komm ich ejtzt von diesen Ausdruck auf mein Ergebnis: [mm] \bruch{1}{5}e^{-2x}(sinx-2cosx)-e^{-x} [/mm]

        
Bezug
Aufgabe partielle Integration: erst umformen
Status: (Antwort) fertig Status 
Datum: 20:22 Mo 22.12.2008
Autor: Loddar

Hallo larifari!


Bevor Du hier an das Integrieren denkst, solltest Du den Ausdruck erst umformen und vereinfachen:

[mm] $$\bruch{e^{x}+\cos(x)}{e^{2x}} [/mm] \ = \ [mm] \bruch{e^{x}}{e^{2x}}+\bruch{\cos(x)}{e^{2x}} [/mm] \ = \ [mm] e^{-x}+e^{-2x}*\cos(x)$$ [/mm]
Dabei kann nun der 1. Term direkt integriert werden.

Für den 2. Term [mm] $e^{-2x}*\cos(x)$ [/mm] musst Du nunmehr die partielle Integration bemühen (und das gleich 2-mal hintereinander).


Gruß
Loddar


Bezug
                
Bezug
Aufgabe partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 Di 23.12.2008
Autor: larifari

Neuer Tag, neues Glück...geht schon wieder bescheiden los.

Also ich habe jetzt umgeformt, soweit so gut.

Jetzt habe ich folgendes stehen:

[mm] \integral cosx*e^{-2x} =-\bruch{1}{2}e^{-2x}*cosx-\integral -\bruch{1}{2}e^{-2x}*(-sinx) [/mm]

Wie löse ich jetzt: [mm] \integral -\bruch{1}{2}e^{-2x}*(-sinx) [/mm] ? Erneut partielle Integration bringt mich ungefähr wieder zu einer ähnlichen Sache, Substitution hatte auch kein Erfolg und in der Formelsammlung stand auch nichts, womit ich hätte was anfangen können? Meine Matherechner liefern mir auch alle ein anderes Ergebnis...


Bezug
                        
Bezug
Aufgabe partielle Integration: nochmals partielle Integration
Status: (Antwort) fertig Status 
Datum: 12:31 Di 23.12.2008
Autor: Loddar

Hallo larifari!


Wie oben schon angedeutet, musst Du hier nochmals partielle Integration anwenden. Damit erhältst Du dann eine Gleichung der Art:
[mm] $$\text{gesuchtes Integral} [/mm] \ = \ [mm] \text{irgendwas anderes} [/mm] + [mm] A*\text{gesuchtes Integral}$$ [/mm]

Dies kannst Du dann wie eine normale Gleichung nach [mm] $\text{gesuchtes Integral}$ [/mm] umstellen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]