www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionAufgabe zum Induktionsbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Aufgabe zum Induktionsbeweis
Aufgabe zum Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zum Induktionsbeweis: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:51 Di 09.02.2010
Autor: RalU

Aufgabe
Hallo. Es geht um folgende Aussage, die mit Induktion bewiesen werden soll.

Sei x [mm] \in \IR\setminus [/mm] { 1 }. Dann gilt [mm] \summe_{k=0}^{n-1}x^{k} [/mm] = [mm] \bruch{1-x^{n}}{1-x} [/mm]

IA] z.z. E(1) gilt.
also:
[mm] \summe_{k=0}^{n-1}x^{k} [/mm] = [mm] x^{0} [/mm] = 1
= [mm] \bruch{1-x^{1}}{1-x} [/mm] = 1

IS] z.z. E(n) => E(n+1) gilt
IV) E(n) gilt, also [mm] \bruch{1-x^{n}}{1-x} [/mm] kann verwendet werden

es gilt also:
[mm] \summe_{k=0}^{(n+1)-1}x^{k} [/mm]
=(nach Verw. IV) [mm] \bruch{1-x^{n}}{1-x} [/mm] + [mm] x^{(n+1)-1} [/mm]
[mm] =\bruch{1-x^{n}}{1-x} [/mm] + [mm] x^{n} [/mm]
[mm] =\bruch{1-x^{n}+(1-x)x^{n}}{1-x} [/mm]
[mm] =\bruch{1-x^{n}+x^{n}-x^{2n}}{1-x} [/mm]
[mm] =\bruch{1-x^{2n}}{1-x} [/mm]

hier häng ich nun.... Ich frag mich insbesondere, ob mein Ansatz komplett falsch war.

Gruß, Ralf

        
Bezug
Aufgabe zum Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Di 09.02.2010
Autor: XPatrickX


> Hallo. Es geht um folgende Aussage, die mit Induktion
> bewiesen werden soll.
>  
> Sei x [mm]\in \IR\setminus[/mm] { 1 }. Dann gilt
> [mm]\summe_{k=0}^{n-1}x^{k}[/mm] = [mm]\bruch{1-x^{n}}{1-x}[/mm]
>  IA] z.z. E(1) gilt.
>  also:
> [mm]\summe_{k=0}^{n-1}x^{k}[/mm] = [mm]x^{0}[/mm] = 1
> = [mm]\bruch{1-x^{1}}{1-x}[/mm] = 1
>  
> IS] z.z. E(n) => E(n+1) gilt
>  IV) E(n) gilt, also [mm]\bruch{1-x^{n}}{1-x}[/mm] kann verwendet
> werden
>  
> es gilt also:
> [mm]\summe_{k=0}^{(n+1)-1}x^{k}[/mm]
>  =(nach Verw. IV) [mm]\bruch{1-x^{n}}{1-x}[/mm] + [mm]x^{(n+1)-1}[/mm]
>  [mm]=\bruch{1-x^{n}}{1-x}[/mm] + [mm]x^{n}[/mm]
>  [mm]=\bruch{1-x^{n}+(1-x)x^{n}}{1-x}[/mm]

Hallo,

nach den Potenzgesetzen gilt immer noch:

[mm] x*x^n=x^{n+1} [/mm]

Gruß Patrick


>  [mm]=\bruch{1-x^{n}+x^{n}-x^{2n}}{1-x}[/mm]
>  [mm]=\bruch{1-x^{2n}}{1-x}[/mm]
>  
> hier häng ich nun.... Ich frag mich insbesondere, ob mein
> Ansatz komplett falsch war.
>  
> Gruß, Ralf


Bezug
                
Bezug
Aufgabe zum Induktionsbeweis: weitere Frage, gleiche Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:56 Di 09.02.2010
Autor: RalU

Ok, danke. Das war ein Fehler mit den Potenzen unten. Danke.

Allerdings komm ich dann immer noch nicht zum Ziel.
War denn mein Ansatz bis dahin in Ordnung?

also unten im IS] steht dann ja:
[mm] =\bruch{1-x^{n}+x^{n}-x^{(n+1)}}{1-x} [/mm]
[mm] =\bruch{1+x^{n+1}}{1-x} [/mm]
[mm] =\bruch{1-x^{n}*x}{1-x} [/mm]
... tja, da gehts dann wieder nicht weiter...
Mein Ziel ist doch: den Ausdruck: [mm] \bruch{1-x^{n}}{1-x} [/mm] zu erreichen, oder nicht?




Bezug
                        
Bezug
Aufgabe zum Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Di 09.02.2010
Autor: schachuzipus

Hallo Ralf,

> Ok, danke. Das war ein Fehler mit den Potenzen unten.
> Danke.
>  
> Allerdings komm ich dann immer noch nicht zum Ziel.
>  War denn mein Ansatz bis dahin in Ordnung?
>  
> also unten im IS] steht dann ja:
>  [mm]=\bruch{1-x^{n}+x^{n}-x^{(n+1)}}{1-x}[/mm] [ok]
>  [mm]=\bruch{1\red{+}x^{n+1}}{1-x}[/mm]

Hier hast du aus einem "-" ein "+" gemacht. Wieso?

Richtigerweise steht da [mm] $\frac{1\red{-}x^{n+1}}{1-x}$ [/mm]

Und das soll rauskommen - fertig!

>  [mm]=\bruch{1-x^{n}*x}{1-x}[/mm]
>  ... tja, da gehts dann wieder nicht weiter...
>  Mein Ziel ist doch: den Ausdruck: [mm]\bruch{1-x^{n}}{1-x}[/mm] zu
> erreichen, oder nicht?

LG

schachuzipus


Bezug
                                
Bezug
Aufgabe zum Induktionsbeweis: weitere Frage
Status: (Frage) beantwortet Status 
Datum: 15:56 Di 09.02.2010
Autor: RalU

Aufgabe
ok, dann steht da:
[mm] \frac{1-x^{n+1}}{1-x} [/mm]
, seh ich ein.


Aber warum soll das rauskommen und nicht
[mm] \frac{1-x^{n}}{1-x} [/mm] ? (vgl. Aufgabenstellung)



Bezug
                                        
Bezug
Aufgabe zum Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Di 09.02.2010
Autor: fred97

Im Induktionsschritt (n --> n+1) mußt Du doch zeigen, dass

             $ [mm] \summe_{k=0}^{n}x^{k} [/mm] $ = $ [mm] \bruch{1-x^{n+1}}{1-x} [/mm] $

ist

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]