www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesAufgabe zur Teilbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Aufgabe zur Teilbarkeit
Aufgabe zur Teilbarkeit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zur Teilbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Mi 13.08.2008
Autor: kantenkoenig

Aufgabe
[math]4ab-1[/math] teilt [math]4a^2-1[/math] nur dann, wenn [math]a=b[/math] ist, wobei [math]a,b\in \mathbb{N}[/math] gilt.  

Also ist meine Lösung so in Ordnung?

Es gilt [math]\frac {4a^2-1} {4ab-1}\in \mathbb{N}[/math] zu zeigen. Da ist gleichbedeutend mit [math]\exists j\in \mathbb{N}:4abj-j=4a^2-1[/math]. Weiter ist [math]4bj=4a-\frac{1} {a}+\frac {j} {a}[/math]. Außerdem darf ohne Einschränkungen [math]b\in \{s\mid 14a+l[/math]. Der Induktionsanfang fordert [math]4ab>4a+1[/math]. Weil [math]b\in G[/math] ist folgt [math]4a+1<4a+4a\leq4ab[/math], also wahr. Sei nun die Behauptung bis [math]l[/math] richtig. Nun zeigen wir es für [math]l+1[/math]. Also folgt [math]4abl+4ab>4a+l+1[/math]. Durch umstellen erhält man [math]4ab-1=4a+l-4abl[/math]. Wegen [math]a\in \mathbb{N}[/math] und [math]b\in G[/math], folgt [math]4ab-1\in \mathbb{N}[/math]. Weiter ist nach Induktionsannahme [math]4a+l-4abl<0[/math]. Also gilt tatsächlich [math]4ab-1>4a+l-4abl[/math]. damit folgt [math]4abj+4b\neq 4a+j[/math], mit [math]b\in G[/math] und [math]j\in U[/math]. Mit den Bedingungen [math]b\in G[/math] und [math]j\in U[/math] gilt die Gleichung nicht und damit wird [math][mm] 4a^2-1[/mm] [math] nicht geteilt. Teilbarkeit wird nur bei [math]j=1[/math] und [math]b=a[/math] erreicht.

        
Bezug
Aufgabe zur Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Do 14.08.2008
Autor: PeterB

Das ist richtig allerdings recht umständlich. Hier eine Alternative:

Falls [mm] $(4ab-1)|(4a^2-1)$ [/mm] folgt [mm] $(4ab-1)|[(4a^2-1)-(4ab-1)]$ [/mm] und damit [mm] $(4ab-1)|(4a^2-4ab)$. [/mm] Nun ist aber $4ab-1$ teilerfremd zu $4a$ und daher: $(4ab-1)|(a-b)$ Die rechte Seite ist offensichtlich kleiner als die linke, daher kann die Teilbarkeit nur für rechte Seite $=0$ also $a=b$ erfüllt sein.

Gruß
Peter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]