www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenAufgespannter Vektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Aufgespannter Vektorraum
Aufgespannter Vektorraum < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgespannter Vektorraum: ob geg. Vektor im Vektorraum
Status: (Frage) beantwortet Status 
Datum: 14:10 Fr 19.11.2010
Autor: tommy987

Aufgabe
Man untersuche, ob für die gegebenen Vektoren u; v; w [mm] \in \IR^3 [/mm]
u [mm] \in [/mm] L(v,w)
gilt, d.h. ob der Vektor u in dem von den Vektoren v und w aufgespannten Vektorraum enthalten ist.

[mm] u=\vektor{1\\-2\\-16} v=\vektor{1\\2\\-3} w=\vektor{2\\3\\1} [/mm]

Kann mir jemand die anzuwendenden Verfahren erläutern, bzw. die ersten Schritte in die richtige Richtung?

Hab keine Schimmer, wo ich da anpacken muss.

lg

        
Bezug
Aufgespannter Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Fr 19.11.2010
Autor: angela.h.b.


> Man untersuche, ob für die gegebenen Vektoren u; v; w [mm]\in \IR^3[/mm]
>  
> u [mm]\in[/mm] L(v,w)
>  gilt, d.h. ob der Vektor u in dem von den Vektoren v und w
> aufgespannten Vektorraum enthalten ist.
>  
> [mm]u=\vektor{1\\ -2\\ -16} v=\vektor{1\\ 2\\ -3} w=\vektor{2\\ 3\\ 1}[/mm]
>  
> Kann mir jemand die anzuwendenden Verfahren erläutern,
> bzw. die ersten Schritte in die richtige Richtung?
>  
> Hab keine Schimmer, wo ich da anpacken muss.

Hallo,

das ist dürftig...

Du mußt herausfinden, ob es [mm] a,b\in \IR [/mm] gibt mit

[mm] \vektor{1\\-2\\-16} [/mm] = [mm] a*\vektor{1\\2\\-3} +b*\vektor{2\\3\\1}, [/mm]

also ein LGS lösen.

Gruß v. Angela


>  
> lg


Bezug
                
Bezug
Aufgespannter Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Fr 19.11.2010
Autor: tommy987

Das hab ich mir auch gedacht, nur was kann ich auf Grund der gelösten Matrix

[mm] \pmat{1 & 2 & 1\\0 & 1 & 4\\ 0 & 0 & 1} [/mm]

aussagen?

lg

Bezug
                        
Bezug
Aufgespannter Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Fr 19.11.2010
Autor: angela.h.b.


> Das hab ich mir auch gedacht, nur was kann ich auf Grund
> der gelösten Matrix
>  
> [mm]\pmat{1 & 2 & 1\\ 0 & 1 & 4\\ 0 & 0 & 1}[/mm]
>  
> aussagen?

Hallo,

Du siehst an der letzten Zeile (0*a+0*b=1), daß das LGS keine Lösung hat.

Gruß v. Angela

>  
> lg


Bezug
                                
Bezug
Aufgespannter Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 Fr 19.11.2010
Autor: tommy987

somit kann ich davon ausgehen, dass der Vektor nicht in diesem Vektorraum vorhanden ist.

Aber kommt bei einer Umwandlung einer 3x3 Matrix in Zeilen-Stufenform nicht immer das Ergbnis:

Keine Lösung, oder
unendliche viele Lösungen

und wen nicht, wie würde es dann aussehen?

lg



lg

Bezug
                                        
Bezug
Aufgespannter Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Fr 19.11.2010
Autor: angela.h.b.

Hallo,

genau eine Lösung gibt es hier:

[mm] \pmat{1&0&&|4\\0&1&&|5\\0&0&&|0}, [/mm]

keine Lösung gibt es da:

[mm] \pmat{1&0&&|4\\0&1&&|5\\0&0&&|6}, [/mm]


unendlich viele Lösungen dort:

[mm] \pmat{1&2&&|4\\0&0&&|0\\0&0&&|0}. [/mm]

Beachte: Deine Koeffizientenmatrix ist [mm] 3\times [/mm] 2.,

[mm] 3\times [/mm] 3 ist die erweiterte Koeffizientenmatrix.

Gruß v. Angela


Bezug
                
Bezug
Aufgespannter Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:42 Fr 26.11.2010
Autor: buzz_lightzyear

Hallo!

> Du mußt herausfinden, ob es [mm]a,b\in \IR[/mm] gibt mit
>
> [mm]\vektor{1\\-2\\-16}[/mm] = [mm]a*\vektor{1\\2\\-3} +b*\vektor{2\\3\\1},[/mm]
>  
> also ein LGS lösen.

kurze Frage: das ist ja die sogenannte Linarkombination, oder? also die vektoren mit a und b multiplizieren und auflösen?

danke & lg


Bezug
                        
Bezug
Aufgespannter Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Fr 26.11.2010
Autor: angela.h.b.


> Hallo!
>  
> > Du mußt herausfinden, ob es [mm]a,b\in \IR[/mm] gibt mit
> >
> > [mm]\vektor{1\\ -2\\ -16}[/mm] = [mm]a*\vektor{1\\ 2\\ -3} +b*\vektor{2\\ 3\\ 1},[/mm]
>  
> >  

> > also ein LGS lösen.
>  
> kurze Frage: das ist ja die sogenannte Linarkombination,
> oder? also die vektoren mit a und b multiplizieren und
> auflösen?

Hallo,

ja, nachschauen, ob dieses Gleichungssystem aus drei Gleichungen mit zwei Variablen eine Lösung hat.

Gruß v. Angela




Bezug
        
Bezug
Aufgespannter Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Sa 20.11.2010
Autor: iskdjim

Aufgabe
Man untersuche, ob für die gegebenen Vektoren u; v;w [mm] \in \IR3 [/mm]
u [mm] \in [/mm] L(v;w) gilt, d.h. ob der Vektor u in dem von den Vektoren v und w aufgespannten Vektorraum enthalten ist.


> Man untersuche, ob für die gegebenen Vektoren u; v; w [mm]\in \IR^3[/mm]
>  
> u [mm]\in[/mm] L(v,w)
>  gilt, d.h. ob der Vektor u in dem von den Vektoren v und w
> aufgespannten Vektorraum enthalten ist.
>  
> [mm]u=\vektor{1\\-2\\-16} v=\vektor{1\\2\\-3} w=\vektor{2\\3\\1}[/mm]
>  

Hallo ich habe die selbe Aufgabe nur eben mit anderen Zahlen.
Würde gern wissen ob ich den hier erklärten Lösungsweg verstanden habe.

Ich bilde ein LGS anhand der Vektoren und löses dieses.
Meine Lösung sieht dann so aus

1 -2 | 11
0  1 |  6
0  0 |  5

da nun die letzte Zeile 0 0 | 5 ist, kann ich sagen der Vektor ist nicht im Vektorraum, ist das korrekt?
und somit wars das mit der aufgabe?

Wenn die Lösung so aussehen würde:

1 -2 | 11
0  1 |  6
0  0 |  0

wäre dann der Vektor im Vektorraum?

mfg,iskdjim

Bezug
                
Bezug
Aufgespannter Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Sa 20.11.2010
Autor: angela.h.b.


>
> Hallo ich habe die selbe Aufgabe nur eben mit anderen
> Zahlen.
>  Würde gern wissen ob ich den hier erklärten Lösungsweg
> verstanden habe.
>  
> Ich bilde ein LGS anhand der Vektoren und löses dieses.
>  Meine Lösung sieht dann so aus
>  
> 1 -2 | 11
>  0  1 |  6
>  0  0 |  5
>  
> da nun die letzte Zeile 0 0 | 5 ist, kann ich sagen der
> Vektor ist nicht im Vektorraum, ist das korrekt?
>  und somit wars das mit der aufgabe?

Hallo,

ja. Das besagte Gleichungssystem hat keine Lösung, also liegt der Vektor nicht in dem Unterraum der von den anderen beiden aufgespannt wird.

>  
> Wenn die Lösung so aussehen würde:
>  
> 1 -2 | 11
>  0  1 |  6
>  0  0 |  0
>  
> wäre dann der Vektor im Vektorraum?

Ja.

Hier wäre u=13v+6w, wenn in der ersten Spalte ursprünglich v stan und in der zweiten w.

Gruß v. Angela

>  
> mfg,iskdjim


Bezug
                        
Bezug
Aufgespannter Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Sa 20.11.2010
Autor: iskdjim

danke für deine schnelle antwort
>  
> >  

> > Wenn die Lösung so aussehen würde:
>  >  
> > 1 -2 | 11
>  >  0  1 |  6
>  >  0  0 |  0
>  >  
> > wäre dann der Vektor im Vektorraum?
>  
> Ja.
>  
> Hier wäre u=13v+6w, wenn in der ersten Spalte
> ursprünglich v stan und in der zweiten w.
>  

muss hier leider nochmal nachhacken.

wie kommst du mit der Lösung auf u = 13v+6v

mfg


Bezug
                                
Bezug
Aufgespannter Vektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 Sa 20.11.2010
Autor: angela.h.b.




Bezug
                                
Bezug
Aufgespannter Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Sa 20.11.2010
Autor: angela.h.b.


> danke für deine schnelle antwort
>  >  
> > >  

> > > Wenn die Lösung so aussehen würde:
>  >  >  
> > > 1 -2 | 11
>  >  >  0  1 |  6
>  >  >  0  0 |  0
>  >  >  
> > > wäre dann der Vektor im Vektorraum?
>  >  
> > Ja.
>  >  
> > Hier wäre u=13v+6w, wenn in der ersten Spalte
> > ursprünglich v stand und in der zweiten w.
>  >  
>
> muss hier leider nochmal nachhacken.

Hallo,

bitte nicht! Ich hab' Dir doch nichts getan! Aber wahrscheinlich meinst Du "nachhaken"...

>  
> wie kommst du mit der Lösung auf u = 13v+6v.

Ich habe das Gleichungssystem von oben gelöst - allerdings falsch...
y=6,
x-2y=11

==> y=6 und x=23.

Gruß v. Angela


Bezug
                                        
Bezug
Aufgespannter Vektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 Sa 20.11.2010
Autor: iskdjim


> Hallo,
>  
> bitte nicht! Ich hab' Dir doch nichts getan! Aber
> wahrscheinlich meinst Du "nachhaken"...

nein ich meinte schon hacken ;)

> > wie kommst du mit der Lösung auf u = 13v+6v.
>  
> Ich habe das Gleichungssystem von oben gelöst - allerdings
> falsch...
>  y=6,
> x-2y=11
> ==> y=6 und x=23.
>  
> Gruß v. Angela
>  

ahso,ideal...dachte schon jetzt versteh ich das auflösen eines GS auch nicht mehr.
danke für deine hilfe

mfg



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]