www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungAufleitung Wurzelfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Aufleitung Wurzelfunktion
Aufleitung Wurzelfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitung Wurzelfunktion: Aufleitung der Wurzelfunktion
Status: (Frage) beantwortet Status 
Datum: 17:35 Mi 15.02.2006
Autor: Lvy

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich bin grad am Wiederholen fürs Abi und komm bei einer Aufleitung nicht weiter.
Die Funktion heißt:
f(x)=sqrt(6x)+sqrt(16-2x)
diese muss nun in den Grenzen von 0 bis 8 integriert werden. Jedoch fällt mir nciht mehr ein wie man Wurzeln aufleitet. Also
von sqrtx ist ja die Aufleitung 2/3x*sqrtx, oder?!
NAch welcher Regel wird denn hierbei aufgeleitet?
Dankeschön!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich bin grad am Wiederholen fürs Abi und komm bei einer Aufleitung nicht weiter.
Die Funktion heißt:
f(x)=sqrt(6x)+sqrt(16-2x)
diese muss nun in den Grenzen von 0 bis 8 integriert werden. Jedoch fällt mir nciht mehr ein wie man Wurzeln aufleitet. Also
von sqrtx ist ja die Aufleitung 2/3x*sqrtx, oder?!
NAch welcher Regel wird denn hierbei aufgeleitet?
Dankeschön!


        
Bezug
Aufleitung Wurzelfunktion: Potenzregel + Substitution
Status: (Antwort) fertig Status 
Datum: 17:46 Mi 15.02.2006
Autor: Roadrunner

Hallo Lvy,

[willkommenmr] !!


Die Wurzelfunktion [mm] $\wurzel{x} [/mm] \ = \ [mm] x^{\bruch{1}{2}}$ [/mm] kann nach dieser Umformung grundsätzlich mit der MBPotenzregel integriert werden.


Da in Deinem Falle aber nicht nur ein $x_$ unter der Wurzel steht, musst Du zusätzlich mit Substitution vorgehen.

Substituiere $z \ := \ 6x$   bzw.   $z \ := \ 16-2x$ .


Gruß vom
Roadrunner


Bezug
                
Bezug
Aufleitung Wurzelfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mi 15.02.2006
Autor: Lvy

Hey, Ja..Substitution, da hab ich auch schon dran gedacht, hab's auch versucht mit dz/dx etc. aber irgendwie komm ich zu keinem ergebnis...


Bezug
                        
Bezug
Aufleitung Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Mi 15.02.2006
Autor: Zwerglein

Hi, Lvy,

naja, bei Potenztermen mit LINEAREN Klammern kommst Du auch mit der einfach zu merkenden Formel zum Ziel:

[mm] \integral{(ax + b)^{k}dx} [/mm] = [mm] \bruch{1}{a*(k+1)}*(ax [/mm] + [mm] b)^{k+1} [/mm] + c.

In Deinem Fall z.B.:

[mm] \integral{\wurzel{16-2x}dx} [/mm] = [mm] \integral{(-2x +16)^{0,5}dx} [/mm]

= [mm] \bruch{1}{-2*(1,5)}*(-2x [/mm] + [mm] 16)^{1,5} [/mm] + c

=  [mm] -\bruch{1}{3}*(-2x [/mm] + [mm] 16)^{1,5} [/mm] + c


Bezug
                        
Bezug
Aufleitung Wurzelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Do 16.02.2006
Autor: Lvy

ok. dankeschön. ich werds dann mal so versuchen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]