www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAufleitungsproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Aufleitungsproblem
Aufleitungsproblem < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitungsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Do 19.01.2006
Autor: philipp-100

Hallo,

diese AUfgabe bereitet mir Probleme ,
kann mir mal jemand Schritt für Schritt erklären wie man dadran geht.
Ich versuchs erst mal selber
Aufleitung gesucht.

f(x)=x/(sqrt(2x+1))


ich wähle z=2x+1
                z'=2

wie ich es gelernt habe versuche ich im Zähler nach einer 2 zu suchen und finde aber keine :-).
dann versuche ich den Zähler umzuformen.
Geht aber auch nicht.(Ich könnte höchstens durch x teilen und dann x durch einen term mit z ersetzen.darf man aber nicht)
Ich weiß jetzt nicht wie ich den Zähler zu einer ableitung von z umformen soll.
Bitte algemein erklären, so dass ich es auch auf andere AUfgaben anwenden kann.
Danke

        
Bezug
Aufleitungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Do 19.01.2006
Autor: Karl_Pech

Hallo philipp-100,


>  Aufleitung gesucht.
>  
>
> [mm]f(x) := \frac{x}{\sqrt{2x+1}}[/mm]
>  
>
> ich wähle z=2x+1
>                  z'=2


Unser Ziel ist es mittels Substitution den Zähler des Integranden zu vereinfachen. Dazu setzen wir [mm]\sqrt{2x + 1} =: z[/mm]. Jetzt formen wir nach [mm]x[/mm] um:


[mm]\sqrt{2x + 1} = z \gdw 2x+1 = z^2 \gdw 2x = z^2 - 1 \gdw x = \frac{z^2 - 1}{2}[/mm]


Jetzt betrachten wir das als eine Funktion und definieren ("setzen"):


[mm]x(z) := \frac{z^2 - 1}{2}[/mm]


Nach der Substitutionsregel für Integration müssen wir jetzt noch die Ableitung davon bestimmen:


[mm]x'(z) = \frac{\partial}{\partial x}\left(\frac{z^2}{2} - \frac{1}{2}\right) = \frac{1}{2}\cdot{2}z = z[/mm]


Nun ersetzen wir [mm]\mathrm{d}x[/mm] durch [mm]z\mathrm{d}z[/mm] und erhalten:


[mm]\int{\frac{x}{\sqrt{2x+1}}\mathrm{d}x} = \int{\frac{\frac{z^2 - 1}{2}}{z}z\mathrm{d}z} = \int{\frac{z^2 - 1}{2}\mathrm{d}z} = \frac{1}{2}\left(\int{z^2\mathrm{d}z}-\int{1\mathrm{d}z}\right) = \frac{1}{2}\left(\frac{z^3}{3}-z\right)[/mm]


Jetzt erinnern wir uns daran wie wir [mm]z[/mm] am Anfang definiert hatten, und setzen es hier ein:


[mm]= \frac{1}{2}\left(\frac{\sqrt{2x+1}^3}{3} - \sqrt{2x+1}\right)[/mm]


Durch Erweiterung des zweiten Bruches mit 3 und anschließendem Ausklammern von [mm]\sqrt{2x+1}[/mm] sollte sich dieser Term noch etwas vereinfachen lassen. Damit ist die Integration mit Substitution beendet.



Viele Grüße
Karl





Bezug
                
Bezug
Aufleitungsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 Do 19.01.2006
Autor: philipp-100

Hey und danke Karl,

jetzt habe ich das endlich verstanden.Ich wusste  nicht das die Regel besagt , dass man alles mit der ABleitung von x multiplizieren muss.
Das was jetzt ganz unten steht ist ja die Aufleitung, ich sollte den ursprünglichen Term von 0 bis 4 integrieren .
EIngesetzt in z ergibt das die Integrationsgrenze 1bis3.
Wenn ich aber unten 1 und 3 einsetze komme ich nicht auf die Lösung.
Mach ich noch was falsch?
Lösung muss sein=3+1/3

Bezug
                        
Bezug
Aufleitungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Do 19.01.2006
Autor: Zwerglein

Hi, philipp,

> jetzt habe ich das endlich verstanden.Ich wusste  nicht das
> die Regel besagt , dass man alles mit der ABleitung von x
> multiplizieren muss.
>  Das was jetzt ganz unten steht ist ja die Aufleitung, ich
> sollte den ursprünglichen Term von 0 bis 4 integrieren .

Und da Karl rücksubstituiert hat, d.h. die ursprünglich Variable x wieder dasteht, musst Du auch genau diese Zahlen (4 und 0) einsetzen: Dann kriegst Du das gewünschte Ergebnis!

>  EIngesetzt in z ergibt das die Integrationsgrenze 1bis3.
>  Wenn ich aber unten 1 und 3 einsetze komme ich nicht auf
> die Lösung.
>  Mach ich noch was falsch?
>  Lösung muss sein=3+1/3

Wenn Du die neuen Grenzen für z (!!!) berechnest, brauchst Du gar nicht rückzusubstituieren, sondern setzt diese Zahlen (also 3 und 1) bereits in den Term
[mm] \bruch{1}{2}*(\bruch{z^{3}}{3} [/mm] - z)
ein und bekommst dann natürlich auch dasselbe Ergebnis von 3+1/3.

mfG!
Zwerglein



Bezug
                                
Bezug
Aufleitungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:17 Do 19.01.2006
Autor: philipp-100

Danke Zwerglein.

Jetzt weiß ich wie es geht.
Aber heute stand ich echt nur auf dem Schlauch .
Gruß

Philipp

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]