www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAuflösbarkeit von Gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Auflösbarkeit von Gruppen
Auflösbarkeit von Gruppen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösbarkeit von Gruppen: Frage
Status: (Frage) beantwortet Status 
Datum: 13:13 Mo 23.05.2005
Autor: Peti

Hallo!
Ich hätte eine Frage zum Thema Auflösbarkeit von Gruppen. Wie zeigt man, dass eine Gruppe der Ordnung pqq auflösbar ist, wenn p und q Primzahlen sind, und p ungleich q?
Wie geht man generell bei Beweisen von Auflösbarkeit vor?
Vielen Dank
und liebe Grüße

        
Bezug
Auflösbarkeit von Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Di 24.05.2005
Autor: Julius

Hallo Peti!

Hilfreich sind hier Sätze der Art:

1) Jede abelsche Gruppe ist auflösbar (trivial).

2) Ist $U [mm] \subset [/mm] G$ ein Normalteiler, dann gilt:

$G$ ist auflösbar   [mm] $\Leftrightarrow$ [/mm]    $U$ und $G/U$ sind auflösbar.

Willst du es damit mal versuchen? ;-)

Viele Grüße
Julius


Bezug
                
Bezug
Auflösbarkeit von Gruppen: Lösungsversuch, Frage
Status: (Frage) beantwortet Status 
Datum: 14:21 Di 24.05.2005
Autor: Peti

Hallo!
Ich habe mal eine Lösung versucht:
zu zeigen: jede Gruppe G, mit mit Ordnung von G ist pqq, ist auflösbar;(p und q sind Primzahlen)
Beweis:
Die Ordnung von G ist pqq [mm] \Rightarrow \existsU: [/mm] mit Ordnung von U ist qq (q-Sylowuntergruppe)
Es gibt dann entweder eine oder p q-Sylowuntergruppen:
[mm] n_{q} [/mm] =1 (modq) oder [mm] n_{q} [/mm] =p (modq)

1. Fall: [mm] n_{q} [/mm] =1
[mm] \Rightarrow [/mm] U ist Normalteiler vin G: die Ordnung von G modulo U ist p=> zyklisch
Ordnung von U ist qq=> U ist nilpotent
[mm] \existsU1: [/mm] Ordnung von U1 ist q; U1 [mm] \le [/mm] U; U ist maximal
[mm] \Rightarrow [/mm] U1 ist Normalteiler von U; die Ordnung von U modulo U1 ist q=> zyklisch
U1 ist zyklisch, da die Ordnung von U1 gleich q
[mm] \Rightarrow [/mm] U1 auflösbar
[mm] \Rightarrow [/mm] G auflösbar

2.Fall ???
Beim zweiten Fall habe ich überhaupt keine Idee. Stimmt den der Erste? Oder was kann/soll ich daran ändern?
Vielen, vielen Dank
liebe Grüße

Bezug
                        
Bezug
Auflösbarkeit von Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Mi 25.05.2005
Autor: Hexe

2. Fall  Angenommen es gäbe p q-Sylowgruppen Jede q-Sylow hat in diesem Fall qq Elemente von denen eines das neutrale ist. Dann gibt es (qq-1)p Elemente der Ordnung q oder qq in den Sylowgruppen. Nach Abzug des neutralen elements bleiben also noch p-1 Elemente übrig die von der Ordung p sein können -> die p-Sylowgruppe ist Normalteiler. Der rest des Beweises folgt wie unter 1.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]