www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesAuflösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - Auflösen
Auflösen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösen: Parametergleichung
Status: (Frage) beantwortet Status 
Datum: 18:01 So 06.01.2008
Autor: sunboy

Aufgabe
Bestimmen Sie die Lösungen der Gleichungen in Abhängigkeit von k €(Element) [mm] \IR [/mm]

Gleichung lautet: [mm] kx^{2} [/mm] + x - [mm] 3k^{2}x [/mm] - 3k = 0

Eine primitive Aufgabe, die ich nicht lösen kann. Habe verschiedene Wege benutzt und komme trotzdem nicht auf diese Lösung:

L steht für die Lösungsmenge, glaube ich zumindestens

L= {0} für k=0
   {3k; -1/k} für k [mm] \not= [/mm] 0

L= {0} für k=0 ist verständlich,
aber wie bekomme ich:
  
{3k; -1/k} für k [mm] \not= [/mm] 0

Ich habe die gegebene Gleichung mehrmals umgeformt, aber ich komme nicht weiter:

[mm] x^{2} [/mm] + (1/k -3k) x - 3 = 0      

komischer weise bekomme ich die Lösung, ohne die pq-Formel anzuwenden, jedoch stimmen die Vorzeichen nicht:
[...] + (1/k -3k) x [...]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 So 06.01.2008
Autor: Teradil

Mit dem Teil bist du doch schon relativ weit:

[mm]x^2 + \left(\bruch{1}{k} -3 \cdot k\right) x - 3 = 0 [/mm]

Den kannst du jetzt einfach mit der pq-Formel auflösen und dann hast du deine beiden Ergebnisse. Nicht vom k abschrecken lassen, sondern einfach mit durchziehen.

[mm]x_{1;2} = \bruch{\bruch{1}{k} - 3 \cdot k}{2} \pm \wurzel{{\left(\bruch{\bruch{1}{k} - 3 \cdot k}{2}\right)}^2 +3}}[/mm]

Das ganz kann man jetzt noch ein wenig umformen... Aber so im groben müsste das eigentlich schon funktionieren.

Bezug
                
Bezug
Auflösen: pq-formel
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:45 So 06.01.2008
Autor: sunboy

habe noch eine frage, wie soll ich die wurzel aus k ziehen, ich kann es aber auch so lassen, aber ich komme immer noch net auf 3k,

bin einfach stupid :-(

Bezug
                        
Bezug
Auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 So 06.01.2008
Autor: Bastiane

Hallo sunboy!

> habe noch eine frage, wie soll ich die wurzel aus k ziehen,
> ich kann es aber auch so lassen, aber ich komme immer noch
> net auf 3k,

Also ich komme zwar auf -3k, aber entweder habe ich mich da irgendwo beim Vorzeichen vertan, oder der Fehler steckt schon irgendwo in obiger Formel. Aus k kannst du so direkt keine Wurzel ziehen, aber du kannst das ganze umformen, und wenn du dann die 3 noch mit hinzunimmst (also alles auf denselben Nenner bringst), erhältst du eine binomische Formel, aus der du dann wieder die Wurzel ziehen kannst.
Also ich habe mal die Klammer unter der Wurzel erweitert und zusammen mit der 3 erhalte ich dann später: [mm] \wurzel{\frac{9k^4+6k^2+1}{4k^2}}=\wurzel{\frac{(3k^2+1)^2}{4k^2}}. [/mm]

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Auflösen: du hast + 3 vergessen
Status: (Frage) beantwortet Status 
Datum: 19:33 So 06.01.2008
Autor: sunboy

ich glaube du hast + 3 vergessen,

Anfangsgleichung: [mm] kx^{2} [/mm] + x - [mm] 3k^{2}x [/mm] - 3k = 0

meine umgeformte gleichung, wenn diese stimmt, lautet:

((1-3k)/k)/2 [mm] \pm \wurzel{((1/k-3k)/2)^2 + [b] 3 [/b]} [/mm]


[...] [mm] \wurzel{((1/k-3k)/2)^2 + [b] 3 [/b]} [/mm]   aufgelöst:

[...] [mm] \wurzel{(1-6k+9k^2)/4) +3 } [/mm]

[...] [mm] \wurzel{(13-6k+9k^2)/4)} [/mm]

stimmt diese letzte Gleichung, bestimmt oder???

Bezug
                                        
Bezug
Auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 So 06.01.2008
Autor: Steffi21

Hallo, die Lösungsansätze von Teradil und Bastiane sind korrekt:

[mm] x_1_2=\bruch{\bruch{1}{k}-3k}{2}\pm\wurzel{(\bruch{\bruch{1}{k}-3k}{2})^{2}+3} [/mm]

[mm] x_1_2=\bruch{\bruch{1}{k}-3k}{2}\pm\wurzel{\bruch{(\bruch{1}{k}-3k)^{2}}{4}+\bruch{12}{4}} [/mm]

[mm] x_1_2=\bruch{\bruch{1}{k}-3k}{2}\pm\wurzel{\bruch{\bruch{1}{k^{2}}-6+9k^{2}+12}{4}} [/mm]

[mm] x_1_2=\bruch{\bruch{1}{k}-3k}{2}\pm\wurzel{\bruch{\bruch{1}{k^{2}}+9k^{2}+6}{4}} [/mm]

[mm] x_1_2=\bruch{\bruch{1}{k}-3k}{2}\pm\wurzel{\bruch{1+9k^{4}+6k^{2}}{4k^{2}}} [/mm]

[mm] x_1_2=\bruch{\bruch{1}{k}-3k}{2}\pm\wurzel{\bruch{(3k^{2}+1)^{2}}{4k^{2}}} [/mm]

somit sollten die Umformungen von Bastiane klar sein, jetzt untersuche die drei Fälle der Diskriminante [mm] D=\bruch{(3k^{2}+1)^{2}}{4k^{2}}, [/mm] Danke an informix, es darf keine Wurzel stehen

1. Fall: D<0, somit keine reelle Lösung
2. Fall: D=0, somit eine reelle Lösung
3. Fall: D>0, somit zwei reelle Lösungen

Steffi







Bezug
                                                
Bezug
Auflösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Mo 07.01.2008
Autor: sunboy

vielen vielen dank!!!!!!!!!!!!! an euch alle

Bezug
                                                
Bezug
Auflösen: Diskriminante
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Mo 07.01.2008
Autor: informix

Hallo Steffi21,

[...]

> [mm]x_1_2=\bruch{\bruch{1}{k}-3k}{2}\pm\wurzel{\bruch{(3k^{2}+1)^{2}}{4k^{2}}}[/mm]
>  
> somit sollten die Umformungen von Bastiane klar sein, jetzt
> untersuche die drei Fälle der Diskriminante
> [mm]D=\wurzel{\bruch{(3k^{2}+1)^{2}}{4k^{2}}}[/mm]

Achtung: die MBDiskriminante ist "das, was unter der Wurzel steht"!!
also [mm] D=\bruch{(3k^{2}+1)^{2}}{4k^{2}} [/mm]

>  
> 1. Fall: D<0, somit keine reelle Lösung
>  2. Fall: D=0, somit eine reelle Lösung
>  3. Fall: D>0, somit zwei reelle Lösungen
>  
> Steffi
>  
>
>
>
>
>  


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]