www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeAuflösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Auflösen
Auflösen < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösen: Auflösen von Gl
Status: (Frage) beantwortet Status 
Datum: 10:24 So 18.10.2009
Autor: kilchi

Aufgabe
Vereinfache:

[mm] (2x^2 [/mm] + 5x - 7) : (2x - 7) =

[mm] (a^3 [/mm] + 1) : (a+1) =

Kann man diese Aufgaben überhaupt eine vernünftige Lösung?

ich finde keine mit meinen dafür bekannten Rechenmethoden!

        
Bezug
Auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 So 18.10.2009
Autor: Ralf1007

Polynomdivision ist das Zauberwort. Falls du dich dran erinnerst, es funktioniert folgendermaßen:

Man dividiert der Reihe nach jeden der Terme des Zählerpolynoms durch den ersten Term des Nennerpolynoms und schreibt jeweils das Ergebnis hinter das Gleichheitszeichen. Anschliessend nimmt man das Ergebnis dieser Division und multipliziert es mit dem Nennerpolynom, um es dann vom Zählerpolynom abzuziehen und damit weiterzurechnen.

Der erste Schritt also wäre [mm] \bruch{2x^{2}}{2x} [/mm] = x, also haben wir ein x rechts vom Gleichheitszeichen und nun wird gerechnet x(2x - 7) = [mm] 2x^{2} [/mm] - 7x und das vom Zählerpolynom abgezogen:

[mm] (2x^{2} [/mm] + 5x - 7) : (2x - 7) = x
[mm] -(2x^{2} [/mm] - 7x)
                
      12x - 7

Damit geht es dann zum 2. Schritt.

Bezug
                
Bezug
Auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 So 18.10.2009
Autor: kilchi

Ja, genau, das habe ich ja auch ausprobiert...

und dann?

[mm] (2x^2+ [/mm] 5x - 7) : (2x - 7) = x
              ...
             12x - 7 : (2x - 7) = 6
=>       -(12x -42)
            -----------------------
                    +35          

Was mache ich jetzt mit diesen 35?

Bezug
                        
Bezug
Auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 So 18.10.2009
Autor: Ralf1007

Das ist der Rest, der bei der Division bleibt, d.h. dein Ergebnis lautet

[mm] \bruch{(2x^{2}+5x-7)}{2x-7} [/mm] = x + 6 + [mm] \bruch{35}{2x-7} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]