www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraAuflösen von S3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Auflösen von S3
Auflösen von S3 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösen von S3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 27.08.2006
Autor: StolperJochen

Aufgabe
Wie läßt sich [mm]S_3[/mm] (symmetrische Gruppe mit 3! Elementen) auflösen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Moin,

wie kann man außerdem schnell auf eine abelsche Normalreihe kommen?

[mm]S_4[/mm] läßt sich folgendermaßen auflösen:

[mm]G_0=\{e\}[/mm]
[mm]G_0=\{e,(12)(34),(13)(24),(14)(23)\}[/mm]
[mm]G_0=A_4[/mm]
[mm]G_4=S_4[/mm]

Wie kann man zeigen, dass das stimmt? Dazu müßte man zeigen, dass jeweils normal ineinander liegen und dass die Faktoren [mm]G_{i+1}/G_i[/mm] abelsch sind.

Vielen Dank schon mal für die Hilfe.

        
Bezug
Auflösen von S3: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 So 27.08.2006
Autor: felixf

Moin!

> Wie läßt sich [mm]S_3[/mm] (symmetrische Gruppe mit 3! Elementen)
> auflösen?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Moin,
>  
> wie kann man außerdem schnell auf eine abelsche Normalreihe
> kommen?

Bei [mm] $S_3$? [/mm] Es ist [mm] $A_3$ [/mm] ein Normalteiler von Ordnung 3 und Index 2. Nun sind [mm] $A_3 \cong A_3/\{ id \}$ [/mm] und [mm] $S_3/A_3$ [/mm] von Primzahlordnung, womit sie zyklisch und insbesondere abelsch sind.

> [mm]S_4[/mm] läßt sich folgendermaßen auflösen:
>  
> [mm]G_0=\{e\}[/mm]
>  [mm]G_1=\{e,(12)(34),(13)(24),(14)(23)\}[/mm]
>  [mm]G_2=A_4[/mm]
>  [mm]G_3=S_4[/mm]

(Ich hab die Nummern mal angepasst)

>  
> Wie kann man zeigen, dass das stimmt? Dazu müßte man
> zeigen, dass jeweils normal ineinander liegen und dass die
> Faktoren [mm]G_{i+1}/G_i[/mm] abelsch sind.

Also [mm] $G_3/G_2 [/mm] = [mm] S_n/A_n$ [/mm] hat immer Ordnung 2 und ist somit zyklisch und insb. abelsch. Und [mm] $A_n$ [/mm] ist immer normal in [mm] $S_n$. [/mm]

[mm] $G_1/G_0 \cong G_1$ [/mm] hat Ordnung 3, ist also ebenfalls zyklisch und insb. abelsch. Und [mm] $G_0$ [/mm] ist immer normal in jeder Gruppe...

Es bleibt [mm] $G_2/G_1$. [/mm] Aber [mm] $|G_1| [/mm] = 3$ und [mm] $|G_2| [/mm] = 4 [mm] \cdot [/mm] 3 = 12$, womit [mm] $|G_2/G_1| [/mm] = 4$ nach Lagrange. Nun ist aber jede Gruppe von Ordnung 4 abelsch (da 4 das Quadrat einer Primzahl ist). Es verbleibt also die Frage, ob [mm] $G_1$ [/mm] normal in [mm] $G_2$ [/mm] ist. Mit den Sylow-Saetzen kommt man hier nicht weiter; die Anzahl der $2$-Sylow-Gruppen in [mm] $A_4$ [/mm] ist entweder 1 oder 3. (Sie muss 1 sein, damit [mm] $G_1$ [/mm] normal in [mm] $G_2$ [/mm] ist.)

Vermutlich musst du das explizit nachrechnen. Zumindest faellt mir grad nichts besseres ein... :-/

LG Felix


Bezug
                
Bezug
Auflösen von S3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 So 27.08.2006
Autor: StolperJochen

Soweit war ich auch ungefähr, aber ist nicht
[mm][mm] |A_4/G_1|=12/4=3[/mm] [mm]
und damit sofort zyklisch, weil 3 prim und damit abelsch?
Das Problem stellt sich doch bei
[mm]|G_1/e|=4/1=4[/mm].
Gut, dann könnte man da den Satz anwenden, dass alle Gruppen der Form [mm]|G|=p^2[/mm], p prim, abelsch sind und man ist bis auf das Normalteilerproblem fertig (für welches ich auch noch nichts gefunden habe) fertig.

Bezug
                        
Bezug
Auflösen von S3: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 So 27.08.2006
Autor: felixf

Hallo!

> Soweit war ich auch ungefähr, aber ist nicht
>  [mm]|A_4/G_1|=12/4=3[/mm]
> und damit sofort zyklisch, weil 3 prim und damit abelsch?

Wenn es eine Gruppe ist, ja. Aber dazu muss [mm] $G_1$ [/mm] normal in [mm] $A_4$ [/mm] sein.

Es reicht uebrigens nachzurechnen, dass fuer ein $g [mm] \in A_4 \setminus G_1$ [/mm] gilt $g [mm] G_1 [/mm] = [mm] G_1 [/mm] g$. Ueberleg dir mal warum (denk dran, dass die Nebenklassen jeweils eine Partition bilden, und [mm] $G_1$ [/mm] selber auch ein Teil ist).

> Das Problem stellt sich doch bei
> [mm]|G_1/e|=4/1=4[/mm].
> Gut, dann könnte man da den Satz anwenden, dass alle Gruppen der Form [mm]|G|=p^2[/mm], p prim, abelsch sind

Man kann es auch explizit nachrechnen. Oder halt den Satz anwenden.

> und man ist bis auf das Normalteilerproblem fertig (für welches ich auch noch nichts gefunden habe) fertig.

Meinst du mit Normalteilerproblem, dass [mm] $\{ e \}$ [/mm] in [mm] $G_1$ [/mm] normal ist? Das ist doch immer so.

LG Felix



Bezug
                                
Bezug
Auflösen von S3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 So 27.08.2006
Autor: StolperJochen

Nein mit dem Normalteilerproblem meinte ich das, was Du als erstes besprochen hast. Das ist dann ja auch klar.

So, für heute reichts. Werde Morgen nochmal Gas geben und die Ringtheorie (die bisher eigentlich relativ klar ist) abschließen und ein paar Übungsaufgaben durchgehen und dann Hals und Beinbruch am Dienstag Morgen...:)

Vielen Dank für die Hilfe und vielleicht bis Morgen, wenn ich noch ein paar Probleme finde, die ich nicht verstehe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]