www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesAufspannen des \IR^3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Aufspannen des \IR^3
Aufspannen des \IR^3 < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufspannen des \IR^3: Kleines Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 10:33 Fr 05.09.2008
Autor: pferdchen01

Stehe gerade etwas auf dem Schlauch.
Wenn ich 2 linear unabhängige Vektoren aus dem [mm] \IR^3 [/mm] habe spannen diese ja einen Unterraum der dim 2 auf. Spannen sie damit trotzdem den [mm] \IR^3 [/mm] auf?

Für einen Tip wäre ich dankbar!

        
Bezug
Aufspannen des \IR^3: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Fr 05.09.2008
Autor: angela.h.b.


> Stehe gerade etwas auf dem Schlauch.
>  Wenn ich 2 linear unabhängige Vektoren aus dem [mm]\IR^3[/mm] habe
> spannen diese ja einen Unterraum der dim 2 auf. Spannen sie
> damit trotzdem den [mm]\IR^3[/mm] auf?

Hallo,

nein, den [mm] \IR^{3} [/mm] spannen sie nicht auf.

Der [mm] \IR^3 [/mm] hat ja die Dimension 3, man braucht also mindestens 3 Vektoren, um ihn aufzuspannen.
Jede Basis (minimales Erzeugendensystem) des [mm] \IR^3 [/mm] enthält drei Elemente.


Allerdings ist der von zwei linear unabhängigen Vektoren aus dem [mm] \IR^3 [/mm] aufgespannte Raum, wie Du selbst schreibst, ein Unterraum des [mm] \IR^3, [/mm] also insbes. eine Teilmenge.

Beispiel: nehmen wir [mm] \vektor{1\\2\\3}, \vektor{4\\5\\6} \in \IR^3. [/mm]

Der von den beiden aufgespannte Raum ist eine Ebene im [mm] \IR^3, [/mm] welche durch den Nullpunkt geht.

Den  Vektor [mm] \vektor{1\\0\\0} [/mm] kannst Du mit den beiden nicht erzeugen. Also spannen sie nicht den [mm] \IR^3 [/mm] auf.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]