www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikAufstellung Laufstaffel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - Aufstellung Laufstaffel
Aufstellung Laufstaffel < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufstellung Laufstaffel: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:06 So 29.07.2012
Autor: hjoerdis

Aufgabe
Bei einer Laufstaffel aus 4 Läufern ist einer erkrankt, sodass einer der anderen zweimal laufen muss. Wie viele Aufstellungsmöglichkeiten gibt es? Beachte: Der doppelt antretende Sportler darf nicht zweimal hintereinander laufen.

Hi alle zusammen. Ich bin gerade dabei die Stochastik zu verstehen, die ich im letzten Schuljahr nicht begriffen habe. Dabei hab ich die Aufgabe hier gefunden, die ich einfach nicht lösen kann. Wenn der Läufer der doppelt laufen muss auch hintereinander laufen könnte wäre die Lösung ja 4!, also 24 Kombinationsmöglichkeiten. Mit dieser Bedingung weiß ich aber nicht wie man die Möglichkeiten ausrechnet.
Ich würde mich sehr über etwas Hilfe freuen ;),
liebe Grüße, Mathilda.

        
Bezug
Aufstellung Laufstaffel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 So 29.07.2012
Autor: MathePower

Hallo hjoerdis,

> Bei einer Laufstaffel aus 4 Läufern ist einer erkrankt,
> sodass einer der anderen zweimal laufen muss. Wie viele
> Aufstellungsmöglichkeiten gibt es? Beachte: Der doppelt
> antretende Sportler darf nicht zweimal hintereinander
> laufen.
>  Hi alle zusammen. Ich bin gerade dabei die Stochastik zu
> verstehen, die ich im letzten Schuljahr nicht begriffen
> habe. Dabei hab ich die Aufgabe hier gefunden, die ich
> einfach nicht lösen kann. Wenn der Läufer der doppelt
> laufen muss auch hintereinander laufen könnte wäre die
> Lösung ja 4!, also 24 Kombinationsmöglichkeiten. Mit


24 Möglichkeiten gibt es nur, wenn alle Läufer gesund sind.


> dieser Bedingung weiß ich aber nicht wie man die
> Möglichkeiten ausrechnet.


Schreibe Dir die Möglichkeiten auf,
wenn z.B. Läufer 1 doppelt laufen muss.

z.B. in der Form: Positon 1 - Läufer 1
                              Positon 2 - Läufer 1
                              Positon 3 - Läufer 2
                              Positon 4 - Läufer 3

Hier gibt es dann [mm]\bruch{4!}{2!}=12[/mm]  Möglichkeiten.

Da aber Läufer 1 nicht zweimal hintereinander laufen darf,
musst Du diese Möglichkeiten aussondern.


> Ich würde mich sehr über etwas Hilfe freuen ;),
>  liebe Grüße, Mathilda.


Gruss
MathePower

Bezug
                
Bezug
Aufstellung Laufstaffel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:25 So 29.07.2012
Autor: hjoerdis

Okey, durch reines ausprobieren kommt man dann auf die entsprechenden 24 Kombinationen und durch rausstreichen dann insgesamt aus 12 Kombies. ich hab mir das so überlegt, dass ich erstmal davon ausgehe dass 1 der doppelläufer ist. dann gibt es ja die Kombies: 1123, 1231, 1213, 1132, 1321, 1312, 2113, 2131, 2311, 3112, 3121, 3211 -> nun muss man diese 12 Möglichkeiten mit 2 multiplizieren, weil die anderen läufer genausogut der doppelläufer sein könnten. dann kommt man aud die 24. wenn man die falschen kombies wegstreicht kommt man auf  6 möglichkeiten * 2 und somit auf 12, aber es muss doch auch einen rechenweg geben, oder?
Mathilda

Bezug
                        
Bezug
Aufstellung Laufstaffel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 So 29.07.2012
Autor: MathePower

Hallo hjoerdis,

> Okey, durch reines ausprobieren kommt man dann auf die
> entsprechenden 24 Kombinationen und durch rausstreichen
> dann insgesamt aus 12 Kombies. ich hab mir das so
> überlegt, dass ich erstmal davon ausgehe dass 1 der
> doppelläufer ist. dann gibt es ja die Kombies: 1123, 1231,
> 1213, 1132, 1321, 1312, 2113, 2131, 2311, 3112, 3121, 3211
> -> nun muss man diese 12 Möglichkeiten mit 2
> multiplizieren, weil die anderen läufer genausogut der
> doppelläufer sein könnten. dann kommt man aud die 24.
> wenn man die falschen kombies wegstreicht kommt man auf  6
> möglichkeiten * 2 und somit auf 12, aber es muss doch auch
> einen rechenweg geben, oder?


Dein Ergebnis ist nicht richtig.

Wenn keine Einschränkung an den Doppel-Läufer gestellt wird,
dann sind die Möglichkeiten für diesen Läufer als Doppel-läufer

[mm]\bruch{4!}{2!}[/mm]

Nun gibt es 3 Möglichkeiten, daß eine Zahl zweimal direkt hintereinander auftritt.
Für die anderen 2 Läufer gibt es 2 Möglichkeiten, diese auf die verbleibenden
Positionen zu verteilen.

Somit gibt es [mm]\bruch{4!}{2!}-3*2!=\bruch{4!}{2!}-3![/mm] Möglichkeiten
einen bestimmten Läufer als Doppel-Läufer zu wählen.

Da aber 3 Läufer als Doppel-Läufer zur Verfügung stehen, ergeben sich:

[mm]3*\left(\bruch{4!}{2!}-3!\right)[/mm]

Möglichkeiten.


>  Mathilda


Gruss
MathePower

Bezug
                                
Bezug
Aufstellung Laufstaffel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:37 So 29.07.2012
Autor: hjoerdis

also,  die [mm] \bruch{4!}{2!} [/mm] ist doch eine permutation, also sieht das ja eigentlich so [mm] \bruch{4!}{(2!*1!*1!)}aus, [/mm] oder?
dann gibt es 3 positionen wo die dopplung liegen kann (die man ja abziehen muss) also 11xx/ x11x/ xx11 , wenn ich das richtig verstehe und dann noch mal die 2! weil diese positionen ja für jeweils zwei läuferkombinationen gelten, damit ergeben sich für einen festgelegten doppelläufer 6 kombinationen * 3 weil der doppelläufer nicht festgelegt ist. das ergibt dann 18. stimmt das soweit. ein wenig verwirrt mich die aufgabe immernoch ... .
Liebe  grüße und schon mal vielen dank,
mathilda

Bezug
                                        
Bezug
Aufstellung Laufstaffel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 So 29.07.2012
Autor: MathePower

Hallo hjoerdis,

> also,  die [mm]\bruch{4!}{2!}[/mm] ist doch eine permutation, also
> sieht das ja eigentlich so [mm]\bruch{4!}{(2!*1!*1!)}aus,[/mm] oder?


Ja.


> dann gibt es 3 positionen wo die dopplung liegen kann (die
> man ja abziehen muss) also 11xx/ x11x/ xx11 , wenn ich das
> richtig verstehe und dann noch mal die 2! weil diese
> positionen ja für jeweils zwei läuferkombinationen
> gelten, damit ergeben sich für einen festgelegten
> doppelläufer 6 kombinationen * 3 weil der doppelläufer
> nicht festgelegt ist. das ergibt dann 18. stimmt das
> soweit. ein wenig verwirrt mich die aufgabe immernoch ...
> .
>  Liebe  grüße und schon mal vielen dank,
>  mathilda


Gruss
MathePower

Bezug
                                                
Bezug
Aufstellung Laufstaffel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 So 29.07.2012
Autor: hjoerdis

super,
vielen dank viel die hilfe,
liebe grüße,
mathilda.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]