www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKomplexität & BerechenbarkeitAufwand von Algorithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Komplexität & Berechenbarkeit" - Aufwand von Algorithmus
Aufwand von Algorithmus < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufwand von Algorithmus: Frage zu kleiner Aufabe
Status: (Frage) beantwortet Status 
Datum: 13:35 So 09.09.2012
Autor: Jack159

Aufgabe
Gegeben sei ein Algorithmus A, dessen Aufwand p(n) ist, wobei p ein Polynom vom Grad k ist. Zeigen Sie, dass A den Aufwand [mm] O(n^k) [/mm] besitzt.
Hinweis: Falls nötig, Beispiele ausprobieren.

Hallo,

Wir haben folgendes in der Vorlesung definiert:

(Mit O(...) ist das Laundau-Symbol gemeint)
Def.: Man sagt eine Folge [mm] (x_n) [/mm] ist O(f(n)): [mm] \gdw |x_n|\lec*f(n) [/mm] für schließlich alle n für eine konstante c.

Meine Lösung:

p ist also ein Polynom vom Grad k. Also wird p in etwa die folgende Gestalt haben:

[mm] p(x)=ax^k+bx^{k-1}+cx^{k-2}.... [/mm]

Uns intressiert hier nur [mm] ax^k. [/mm] Dies nun als Folge geschrieben:

[mm] x_n=a*n^k [/mm]

Damit gilt doch:

[mm] |x_n| \le c*n^k \gdw a*n^k \le c*n^k [/mm]   für schließlich alle n mit c [mm] \ge [/mm] a

Also gilt:
[mm] x_n=a*n^k [/mm] ist [mm] O(n^k) [/mm]



Ist meine Lösung richtig?


        
Bezug
Aufwand von Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 00:40 Mi 12.09.2012
Autor: Marcel

Hallo Jack,

> Gegeben sei ein Algorithmus A, dessen Aufwand p(n) ist,
> wobei p ein Polynom vom Grad k ist. Zeigen Sie, dass A den
> Aufwand [mm]O(n^k)[/mm] besitzt.
>  Hinweis: Falls nötig, Beispiele ausprobieren.
>  Hallo,
>  
> Wir haben folgendes in der Vorlesung definiert:
>  
> (Mit O(...) ist das Laundau-Symbol gemeint)
>  Def.: Man sagt eine Folge [mm](x_n)[/mm] ist O(f(n)): [mm]\gdw |x_n|\le c*f(n)[/mm]

Du hattest dort ein Leerzeichen vergessen, deswegen sieht man
bei Dir nicht, was Du meinst!

> für schließlich alle n für eine konstante c.
>  
> Meine Lösung:
>  
> p ist also ein Polynom vom Grad k. Also wird p in etwa die
> folgende Gestalt haben:
>
> [mm]p(x)=ax^k+bx^{k-1}+cx^{k-2}....[/mm]
>  
> Uns intressiert hier nur [mm]ax^k.[/mm] Dies nun als Folge
> geschrieben:
>  
> [mm]x_n=a*n^k[/mm]
>  
> Damit gilt doch:
>  
> [mm]|x_n| \le c*n^k \gdw a*n^k \le c*n^k[/mm]   für schließlich
> alle n mit c [mm]\ge[/mm] a
>  
> Also gilt:
> [mm]x_n=a*n^k[/mm] ist [mm]O(n^k)[/mm]
>  
>
>
> Ist meine Lösung richtig?
>  

Nein, jedenfalls sehe ich das so, dass Du eigentlich das benutzt, was
Du zeigen sollst:

Nämlich dass für ein Polynom [mm] $p(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_1x^1+a_0$ [/mm] gilt:

[mm] $$p(n)=O(n^k)\,.$$ [/mm]
(Ich weiß, unschöne, aber gängige Notation. Etwas besser
$$p(n) [mm] \in O(n^k)\,,$$ [/mm]
außerdem sollte da noch $n [mm] \to \infty$ [/mm] dabeistehen. Aber egal. Bei Dir
bzw. bei der Euch vorliegenden Definition ist übrigens [mm] $x_n=p(n)\,$ [/mm] für
alle [mm] $n\,$ [/mm] in der Aufgabe gemeint - das musst Du Dir erstmal klarmachen!)

Zu zeigen ist also:
Es gibt ein $c > [mm] 0\,,$ [/mm] so dass $p(n) [mm] \le c*n^k$ [/mm] für alle [mm] $n\,.$ [/mm] (Im Prinzip
bräuchte man auch nur alle [mm] $n\,$ [/mm] ab einem [mm] $n_0\,,$ [/mm] aber halten wir uns
an die von Dir zitierte Version).

(Das würde auch passen, wenn [mm] $p\,$ [/mm] einen Grad [mm] $\le [/mm] k$ hätte - bei
$> [mm] k\,$ [/mm] "wird die Aussage falsch"!)

Wie findet man sowas?

Nunja:
[mm] $$|p(n)|=\left|\sum_{m=0}^k a_m n^m\right| \le \sum_{m=0}^k |a_m| n^m \le (k+1)\underbrace{\max\{|a_0|,\;...,\;|a_k|\}}_{ \ge |a_k| > 0}\;\cdot n^k$$ [/mm]

Begründe diese Ungleichung für alle [mm] $n\,,$ [/mm] dann setze
[mm] $$c:=(k+1)\;\max\{|a_0|,\;...,\;|a_k|\}\,,$$ [/mm]
wobei der zweite Faktor wie oben angedeutet $> [mm] 0\,$ [/mm] ist, da [mm] $p\,$ [/mm] Grad
[mm] $k\,$ [/mm] hat!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]