www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAusgangsfunktion bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Ausgangsfunktion bestimmen
Ausgangsfunktion bestimmen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausgangsfunktion bestimmen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:17 Sa 09.04.2005
Autor: finri

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo, ich habe noch ein weiteres Problem.

Bestimme zur Ableitung die Ausgangsfunktion ( die Formel weiß ich, komme aber mit der nachfolgenden Aufgabe trotzdem überhaupt nicht klar):

m´´  (x) = (3-2x)(2-x²)
                 ---------------
                        5

Ich benötige dringend die genaue Ausrechnung, damit ich das alles noch mal nachvollziehen kann.
tausend Dank für eure Hilfe!

        
Bezug
Ausgangsfunktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Sa 09.04.2005
Autor: Sigrid

Hallo finri

[willkommenmr]

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Hallo, ich habe noch ein weiteres Problem.
>  
> Bestimme zur Ableitung die Ausgangsfunktion ( die Formel
> weiß ich, komme aber mit der nachfolgenden Aufgabe trotzdem
> überhaupt nicht klar):
>  
> m´´  (x) = (3-2x)(2-x²)
>                   ---------------
>                          5
>  

Ich gehe mal davon aus, dass deine Funktion
[mm] m''(x) = \bruch{(3 - 2x)(2 - x^2)}{5} [/mm]
ist. Die rechte Seite formst du jetzt erst einmal um

Das Ergebnis müsste sein

[mm] m''(x) = \bruch{2}{5} x^3 - \bruch{3}{5} x^2 - \bruch{4}{5} x + \bruch{6}{5} [/mm]

So, jetzt musst du dir für jeden Summanden überlegen, wie er bei m' aussieht.
[mm] x^3 [/mm] kommt von [mm] x^4. [/mm] Wenn du von [mm] x^4 [/mm] die Steigung bestimmst, erhälst du allerdings 4 [mm] x^3, [/mm] also brauchen wir noch den Faktor [mm]\bruch{1}{4} [/mm]. Wir haben also für m'(x) schon einmal den Summanden

[mm] \bruch{2}{5} \cdot \bruch{1}{4}x^4 [/mm]

Genauso gehst du mit den anderen Summanden vor. Du müsstest dann erhalten:

[mm] m'(x) = \bruch{2}{5} \cdot \bruch{1}{4}x^4 - \bruch{3}{5} \cdot \bruch{1}{3}x^3 - \bruch{4}{5} \cdot \bruch{1}{2}x^2 + \bruch{6}{5} x + C [/mm]

Die Konstante C brauchst du, weil die Steigung sich nicht ändert, wenn man die Kurve nach oben oder nach unten verschiebt.

Kontrolliere bitte die Rechnung, indem du wieder die Steigung berechnest.

Dieses Verfahren musst du jetzt noch einmal anwenden, damit du m(x) bekommst. Versuche es einmal selbst und gib dein Ergebnis hier an. Wir werden es dann durchsehen und gegebenenfalls korrigieren.

Trau dich auch ruhig an den Formeleditor. Er ist nicht so schwierig, wie er aussieht, und in der Vorschau kannst du immer sehen, was daraus geworden ist.

Ich wünsche dir viel Erfolg und melde dich, wie es geklappt hat.

Gruß Sigrid

> Ich benötige dringend die genaue Ausrechnung, damit ich das
> alles noch mal nachvollziehen kann.
>  tausend Dank für eure Hilfe!


Bezug
        
Bezug
Ausgangsfunktion bestimmen: Vereinfachung
Status: (Antwort) fertig Status 
Datum: 16:16 Sa 09.04.2005
Autor: mathrix

Hallo finri,

erst einmal [willkommenmr],

viel habe ich der Antwort von Storch nicht hinzuzufügen, jedoch kannst du dir die Arbeit etwas vereinfachen indem du, bevor du die Stammfunktion zu m'' bildest, das "geteilt durch 5" "herausziehst". D.h. deine Funktion m'' sieht dann folgendermaßen aus:
[mm] m''(x) = \bruch{1}{5} * (3-2x)(2-x^2) [/mm]

Jetzt musst du bei m', also der Ableitung einfach folgendes machen:
[mm] m'(x) = \bruch{1}{5} * ((3-2x)(2-x^2))' [/mm]

Beim Ableiten von [mm](3-2x)(2-x^2)[/mm] wendest du ganz normal die dir bekannten Regeln an.


Gruß,

mathrix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]