www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikAussage/Definition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Aussagenlogik" - Aussage/Definition
Aussage/Definition < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussage/Definition: Ist eine Definition Äquivalent
Status: (Frage) beantwortet Status 
Datum: 15:55 So 28.10.2012
Autor: Peeter123

Aufgabe
Definition: Ein Graph mit n Knoten heißt "vollständig" wenn es zu je zwei Knoten stets genau eine verbindende Kante gibt.

Geben Sie ein Kriterium an, das äquivalent dazu ist, dass ein Graph mit n Knoten nicht vollständig ist.

Hallo,

Ich würde die Aufgabe gerne Schritt für Schritt möglichst systematisch Lösen. Das bedeutet, dass ich (Teil)-Aussagen formuliere, zusammensetze und dann negiere.
Ich könnte auch direkt die Endlösung hinschreiben ala
Ein Graph mit n Knoten ist nicht vollständig [mm] \gdw [/mm] ......
Jedoch macht man so leichter Fehler und zudem gäbe es in Klausuren für solch knappe Lösungen eventuell Punktabzug.




Definitionen sind doch generell Äquivalenzen, oder? Ich würde die obige Definition wie folgt umschreiben:

Ein Graph mit n Knoten heißt "vollständig" [mm] \gdw [/mm] Es gibt zu je zwei Knoten stets genau eine verbindende Kante.

Wäre das so schonmal richtig umgeschrieben?

Dann Teilaussagen/Teilaussageformen definieren:

A(x): Ein Graph mit n Knoten heißt "vollständig".
B:  Es gibt zu je zwei Knoten stets genau eine verbindende Kante.

Dann gilt:

(Ein Graph mit n Knoten heißt "vollständig" [mm] \gdw [/mm] Es gibt zu je zwei Knoten stets genau eine verbindende Kante. ) [mm] \gdw [/mm] (A(x) [mm] \gdw [/mm] B)


Negation:

[mm] \neg [/mm] (A(x) [mm] \gdw [/mm] B)
[mm] \gdw [/mm] ( [mm] \neg [/mm]  A(x) [mm] \gdw \neg [/mm]  B )
[mm] \gdw [/mm] (Ein Graph mit n Knoten heißt nicht "vollständig" [mm] \gdw [/mm] Es gibt mindestens zwei Knoten mit mehr als einer verbindenden Kante oder mit keiner verbindenden Kante.)


Ist das richtig so?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aussage/Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 10:25 Mo 29.10.2012
Autor: schachuzipus

Hallo Peeter123,


> Definition: Ein Graph mit n Knoten heißt "vollständig"
> wenn es zu je zwei Knoten stets genau eine verbindende
> Kante gibt.
>  
> Geben Sie ein Kriterium an, das äquivalent dazu ist, dass
> ein Graph mit n Knoten nicht vollständig ist.
>  Hallo,
>  
> Ich würde die Aufgabe gerne Schritt für Schritt
> möglichst systematisch Lösen. Das bedeutet, dass ich
> (Teil)-Aussagen formuliere, zusammensetze und dann
> negiere.



Du suchst doch ein Kriterium, mit dem du die Vollständigkeit eines Graphen beschreiben kann. Und das willst du dann negieren.

>  Ich könnte auch direkt die Endlösung hinschreiben ala
>  Ein Graph mit n Knoten ist nicht vollständig [mm]\gdw[/mm] ......
>  Jedoch macht man so leichter Fehler und zudem gäbe es in
> Klausuren für solch knappe Lösungen eventuell
> Punktabzug.
>  
>
>
>
> Definitionen sind doch generell Äquivalenzen, oder?

Nein

> Ich
> würde die obige Definition wie folgt umschreiben:
>  
> Ein Graph mit n Knoten heißt "vollständig" [mm]\gdw[/mm] Es gibt
> zu je zwei Knoten stets genau eine verbindende Kante.
>  
> Wäre das so schonmal richtig umgeschrieben?
>  
> Dann Teilaussagen/Teilaussageformen definieren:
>  
> A(x): Ein Graph mit n Knoten heißt "vollständig".
>  B:  Es gibt zu je zwei Knoten stets genau eine verbindende
> Kante.
>  
> Dann gilt:
>  
> (Ein Graph mit n Knoten heißt "vollständig" [mm]\gdw[/mm] Es gibt
> zu je zwei Knoten stets genau eine verbindende Kante. )
> [mm]\gdw[/mm] (A(x) [mm]\gdw[/mm] B)
>  
>
> Negation:
>  
> [mm]\neg[/mm] (A(x) [mm]\gdw[/mm] B)
> [mm]\gdw[/mm] ( [mm]\neg[/mm]  A(x) [mm]\gdw \neg[/mm]  B )
>  [mm]\gdw[/mm] (Ein Graph mit n Knoten heißt nicht "vollständig"
> [mm]\gdw[/mm] Es gibt mindestens zwei Knoten mit mehr als einer
> verbindenden Kante oder mit keiner verbindenden Kante.)

Das hast du formal richtig negiert, aber du suchst doch für einen Graphen mit n Knoten eine Charakterisierung, die äquivalent zu der in der Definition gegebenen ist und die du nachher negierst ...

Überlege mal, wieviele Kanten ein vollst. Graph mit n Knoten hat und wie du ihn dadurch charakterisieren kannst ...

Ein Graph mit n Knoten ist genau dann vollst., wenn er **** Kanten hat.

Also ist ein Graph mit n Knoten nicht vollst., genau dann wenn .......


>  
>
> Ist das richtig so?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Aussage/Definition: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Mo 29.10.2012
Autor: tobit09

Hallo schachuzipus,


> Das hast du formal richtig negiert, aber du suchst doch
> für einen Graphen mit n Knoten eine Charakterisierung, die
> äquivalent zu der in der Definition gegebenen ist und die
> du nachher negierst ...
>  
> Überlege mal, wieviele Kanten ein vollst. Graph mit n
> Knoten hat und wie du ihn dadurch charakterisieren kannst
> ...

Das funktioniert nur, wenn Mehrfachkanten ausgeschlossen sind. Das scheint beim Fragesteller nicht der Fall zu sein.

Viele Grüße
Tobias

Bezug
                        
Bezug
Aussage/Definition: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Mo 29.10.2012
Autor: schachuzipus

Hallo Tobias,

oh wei, das habe ich implizit unterstellt [bonk], steht aber echt nirgends.

Danke für deinen Hinweis, das wäre mir im Leben nicht aufgefallen, ich ging so fest implizit davon aus, dass der Graph einfach sei ... [konfus]

@ Peeter123:

Großes [sorry], meinen Beitrag kannst du vergessen [verlegen]

Gruß

schachuzipus


Bezug
        
Bezug
Aussage/Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Mo 29.10.2012
Autor: tobit09

Hallo Peeter123!


> Definitionen sind doch generell Äquivalenzen, oder?

Wenn es in einer Definition lautet

     "... heißt ..., wenn ... .",

ist damit

     "... heißt ... genau dann, wenn ... ."

gemeint. War das das, was du meintest?


> Ich
> würde die obige Definition wie folgt umschreiben:
>  
> Ein Graph mit n Knoten heißt "vollständig" [mm]\gdw[/mm] Es gibt
> zu je zwei Knoten stets genau eine verbindende Kante.
>  
> Wäre das so schonmal richtig umgeschrieben?

Ja.

> Dann Teilaussagen/Teilaussageformen definieren:
>  
> A(x): Ein Graph mit n Knoten heißt "vollständig".

Gemeint offensichtlich:
x sei ein Graph mit n Knoten.
A(x) bezeichne die Aussage "x ist vollständig.".


>  B:  Es gibt zu je zwei Knoten stets genau eine verbindende
> Kante.

B(x) bezeichne die Aussage "In x gibt es zu je zwei Kanten stets genau eine verbindende Kante."

> Dann gilt:
>  
> (Ein Graph mit n Knoten heißt "vollständig" [mm]\gdw[/mm] Es gibt
> zu je zwei Knoten stets genau eine verbindende Kante. )
> [mm]\gdw[/mm] (A(x) [mm]\gdw[/mm] B)
>  
>
> Negation:
>  
> [mm]\neg[/mm] (A(x) [mm]\gdw[/mm] B)

Das ist Blödsinn. Du sollst nicht die [mm] $A(x)\gdw [/mm] B(x)$ negieren, sondern (wahlweise) A(x) oder B(x).

> [mm]\gdw[/mm] ( [mm]\neg[/mm]  A(x) [mm]\gdw \neg[/mm]  B )

Dies ist äquivalent zu [mm] $A(x)\gdw [/mm] B(x)$.

>  [mm]\gdw[/mm] (Ein Graph mit n Knoten heißt nicht "vollständig"
> [mm]\gdw[/mm] Es gibt mindestens zwei Knoten mit mehr als einer
> verbindenden Kante oder mit keiner verbindenden Kante.)

Die letzte Zeile beinhaltet die korrekte Negation von "x vollständig".


Du hast unnützen Formalkram betrieben, bei dem du dann auch Fehler eingebaut hast. Zu negieren ist lediglich die Aussage $B(x)$. Das hast du intuitiv richtig gemacht. Willst du die Negation formaler durchführen, müsstest du zunächst die Aussage B(x) formalisieren.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]