www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikAussage beweisen, so richtig?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Aussagenlogik" - Aussage beweisen, so richtig?
Aussage beweisen, so richtig? < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussage beweisen, so richtig?: Idee
Status: (Frage) beantwortet Status 
Datum: 19:23 Di 12.04.2011
Autor: Fatih17

Aufgabe
Verifzieren Sie folgende Aussagen fur beliebige Mengen M;N; P:

1) Ist M [mm] \cap [/mm] P = N [mm] \cap [/mm] P und M [mm] \cup [/mm] P = N [mm] \cup [/mm] P , so gilt M = N

Hallo,

ich habe leider keine Ahnung wie man sowas macht, also habe ich selber etwas geforscht und mir folgendes gedacht :

M [mm] \cap [/mm] P = N [mm] \cap [/mm] P

x [mm] \in [/mm] M [mm] \wedge [/mm] x [mm] \in [/mm] P = x [mm] \in [/mm] N [mm] \wedge [/mm] x [mm] \in [/mm] P  // hole x [mm] \in [/mm] P rüber, somit fällt das weg

also:

x [mm] \in [/mm] M = x [mm] \in [/mm] N
M=N

ist das so richtig ausgedrückt ?

        
Bezug
Aussage beweisen, so richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Di 12.04.2011
Autor: Schadowmaster

Es ist zum Teil richtig, zum Teil aber auch nur wtf.^^
Richtig ist dein Ansatz, dass du ein x aus der Menge betrachtest.
Das Gleichheitszeichen in der zweiten Zeile, wo du P rüberhohlst, hat da aber nix verloren.
Somit darfst du auch das P nicht so einfach rüberhohlen.

Und jetzt mal how to:
Die Gleichheit von Mengen wird eigendlich klassischerweise immer über Teilmengenrelationen bewiesen.
Also:

$M = N [mm] \gdw [/mm] ((M [mm] \subseteq [/mm] N) [mm] \wedge [/mm] (N [mm] \subseteq [/mm] M))$
Du musst also zeigen:
$ x [mm] \in [/mm] M [mm] \Rightarrow [/mm] x [mm] \in [/mm] N$ und $x [mm] \in [/mm] N [mm] \Rightarrow [/mm] x [mm] \in [/mm] M$

Heißt also nimm dir ein beliebiges x aus M und zeige, dass es in N liegt.
Danach nimm dir ein beliebiges x aus N und zeig, dass es in M liegt.
Dann hast du gezeigt, dass N=M.
Versuch das erstmal und wenn du irgendwo stecken bleibst sag Bescheid. ;)

Bezug
                
Bezug
Aussage beweisen, so richtig?: Idee
Status: (Frage) überfällig Status 
Datum: 20:38 Di 12.04.2011
Autor: Fatih17

Also wenn ich das so mache wie du würde ich so anfangen:

M [mm] \cap [/mm] P = N [mm] \cap [/mm] P
[mm] \gdw [/mm] (M [mm] \cap [/mm] P [mm] \subseteq [/mm] P [mm] \cap [/mm] N)  [mm] \wedge [/mm] (P [mm] \cap [/mm] N [mm] \subseteq [/mm] M [mm] \cap [/mm] P)

wäre das so richtig? :(



Bezug
                        
Bezug
Aussage beweisen, so richtig?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Di 12.04.2011
Autor: Docy

Hallo Fatih17,
vielleicht hiflt dir folgendes:
M = (M\ P) [mm] \cup (M\cap [/mm] P)
Jetzt wähle einfach ein x [mm] \in [/mm] M \ P und zeige, dass es in N ist und dasselbe für ein x [mm] \in M\cap [/mm] P. Dann zeigst du das Ganze auch für y [mm] \in [/mm] N = (N \ P) [mm] \cup (N\cap [/mm] P).
Ist zwar ein bisschen länger und nicht unbedingt notwendig, aber doch anschaulich.

Gruß Docy

Bezug
                        
Bezug
Aussage beweisen, so richtig?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Do 14.04.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]