www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAussage über Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Aussage über Reihen
Aussage über Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussage über Reihen: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:32 Mi 04.05.2011
Autor: al3pou

Aufgabe
Ist die folgende Aussage wahr? Begründen Sie Ihre Antwort! Ist sie falsch, durch ein Gegenbeispiel wiederlegen.

Es sei [mm] (a_{n}) [/mm] eine Folge reeller Zahlen. Die Reihe [mm] \summe_{n=0}^{\infty} a_{n} [/mm] ist konvergent, wenn gilt:

- für jedes [mm] \varepsilon [/mm] > 0 existiert ein [mm] n_{0} \in \IN [/mm] , so dass für alle m [mm] \ge [/mm] n > [mm] \n_{0} [/mm] gilt: [mm] |\summe_{k=n}^{m} a_{k}| [/mm] < [mm] \varepsilon [/mm]

Wie soll das gehen? Ich hab mir schon länger darüber den Kopf zerbrochen, aber komme zu keiner Idee oder Lösungsansatz.

        
Bezug
Aussage über Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 04.05.2011
Autor: kamaleonti

Moin al3pou,
> Ist die folgende Aussage wahr? Begründen Sie Ihre Antwort!
> Ist sie falsch, durch ein Gegenbeispiel wiederlegen.
>  
> Es sei [mm](a_{n})[/mm] eine Folge reeller Zahlen. Die Reihe
> [mm]\summe_{n=0}^{\infty} a_{n}[/mm] ist konvergent, wenn gilt:
>  
> - für jedes [mm]\varepsilon[/mm] > 0 existiert ein [mm]n_{0} \in \IN[/mm] ,
> so dass für alle m [mm]\ge[/mm] n > [mm]n_{0}[/mm] gilt: [mm]|\summe_{k=n}^{m} a_{k}|[/mm] < [mm]\varepsilon[/mm]
>  Wie soll das gehen? Ich hab mir schon länger darüber den
> Kopf zerbrochen, aber komme zu keiner Idee oder
> Lösungsansatz.

Es handelt sich um das Cauchykriterium für Reihenkonvergenz. Betrachte die Folge [mm] S_n:=\sum_{k=0}^n a_k. [/mm] (Diese Folge konvergiert genau dann, wenn [mm] \summe_{n=0}^{\infty} a_{n} [/mm] konvergiert.)
Konvergiert [mm] S_n, [/mm] so ist aufgrund der Charakterisierung in [mm] \IR [/mm] und [mm] \IC [/mm] die Folge [mm] S_n [/mm] eine Cauchyfolge. Nun überprüfe mal, was das heißt.

LG

Bezug
                
Bezug
Aussage über Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Mi 04.05.2011
Autor: al3pou


> Moin al3pou,
>  > Ist die folgende Aussage wahr? Begründen Sie Ihre

> Antwort!
> > Ist sie falsch, durch ein Gegenbeispiel wiederlegen.
>  >  
> > Es sei [mm](a_{n})[/mm] eine Folge reeller Zahlen. Die Reihe
> > [mm]\summe_{n=0}^{\infty} a_{n}[/mm] ist konvergent, wenn gilt:
>  >  
> > - für jedes [mm]\varepsilon[/mm] > 0 existiert ein [mm]n_{0} \in \IN[/mm] ,
> > so dass für alle m [mm]\ge[/mm] n > [mm]n_{0}[/mm] gilt: [mm]|\summe_{k=n}^{m} a_{k}|[/mm]
> < [mm]\varepsilon[/mm]
>  >  Wie soll das gehen? Ich hab mir schon länger darüber
> den
> > Kopf zerbrochen, aber komme zu keiner Idee oder
> > Lösungsansatz.
> Es handelt sich um das Cauchykriterium für
> Reihenkonvergenz. Betrachte die Folge [mm]S_n:=\sum_{k=0}^n a_k.[/mm]

Betrachtet sei eine Folge, aber [mm] S_{n} [/mm] ist doch eine Reihe.

> (Diese Folge konvergiert genau dann, wenn
> [mm]\summe_{n=0}^{\infty} a_{n}[/mm] konvergiert.)
>  Konvergiert [mm]S_n,[/mm] so ist aufgrund der Charakterisierung in
> [mm]\IR[/mm] und [mm]\IC[/mm] die Folge [mm]S_n[/mm] eine Cauchyfolge. Nun überprüfe
> mal, was das heißt.

Naja, wenn ich das jetzt richtig verstanden hab, dann heißt das doch, dass wenn die Folge [mm] a_{n} [/mm] konvergiert, dann konvergiert auch die Reihe oder?  Aber ich habe keine Ahnung, wie ich das jetzt zeigen müsste.

Bezug
                        
Bezug
Aussage über Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Mi 04.05.2011
Autor: kamaleonti


> > Moin al3pou,
>  >  > Ist die folgende Aussage wahr? Begründen Sie Ihre

> > Antwort!
> > > Ist sie falsch, durch ein Gegenbeispiel wiederlegen.
>  >  >  
> > > Es sei [mm](a_{n})[/mm] eine Folge reeller Zahlen. Die Reihe
> > > [mm]\summe_{n=0}^{\infty} a_{n}[/mm] ist konvergent, wenn gilt:
>  >  >  
> > > - für jedes [mm]\varepsilon[/mm] > 0 existiert ein [mm]n_{0} \in \IN[/mm] ,
> > > so dass für alle m [mm]\ge[/mm] n > [mm]n_{0}[/mm] gilt: [mm]|\summe_{k=n}^{m} a_{k}|[/mm]
> > < [mm]\varepsilon[/mm]
>  >  >  Wie soll das gehen? Ich hab mir schon länger
> darüber
> > den
> > > Kopf zerbrochen, aber komme zu keiner Idee oder
> > > Lösungsansatz.
> > Es handelt sich um das Cauchykriterium für
> > Reihenkonvergenz. Betrachte die Folge [mm]S_n:=\sum_{k=0}^n a_k.[/mm]
> Betrachtet sei eine Folge, aber [mm]S_{n}[/mm] ist doch eine Reihe.

Nein!
[mm] S_n [/mm] ist die Folge der Partialsummen. Den Wert von [mm] \sum_{k=0}^n a_k [/mm] kann man doch immer durch Addition endlich vieler Summanden ausrechnen.

>  > (Diese Folge konvergiert genau dann, wenn

> > [mm]\summe_{n=0}^{\infty} a_{n}[/mm] konvergiert.)
>  >  Konvergiert [mm]S_n,[/mm] so ist aufgrund der Charakterisierung
> in
> > [mm]\IR[/mm] und [mm]\IC[/mm] die Folge [mm]S_n[/mm] eine Cauchyfolge. Nun überprüfe
> > mal, was das heißt.
>  
> Naja, wenn ich das jetzt richtig verstanden hab, dann
> heißt das doch, dass wenn die Folge [mm]a_{n}[/mm] konvergiert,
> dann konvergiert auch die Reihe oder?  Aber ich habe keine
> Ahnung, wie ich das jetzt zeigen müsste.  

Nein, falsch verstanden. Du behauptest gerade, dass auch die harmonische Reihe [mm] \sum_{k=0}^\infty \frac1{n} [/mm] konvergiert, denn 1/n ist eine konvergente Nullfolge. Das ist aber ein bekanntes Gegenbeispiel dafür. Die harmonische Reihe divergiert.


Unter der Voraussetzung, dass die Grenzwerte existieren, gilt:
   [mm] \lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{k=0}^n a_k=\sum_{k=0}^\infty a_k [/mm]
Deswegen ist die Konvergenz der Partialsummenfolge und der Reihe äquivalent.

Wenn [mm] S_n [/mm] also eine Cauchyfolge ist, gilt:
Für alle [mm] \varepsilon>0 [/mm] finden wir ein [mm] n_0\in\IN [/mm] mit für alle m,n mit [mm] m,n\geq n_0 [/mm] gilt:
     [mm] |S_m-S_n|<\varepsilon [/mm]
Damit gilt
     [mm] |S_m-S_n|=\sum_{k=n}^m a_k<\varepsilon. [/mm]
Das ist aber deine ursprüngliche Aussage.

LG



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]