www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesAussagenlogik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Aussagenlogik
Aussagenlogik < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik: Auflösen von Aussagenverb.
Status: (Frage) beantwortet Status 
Datum: 12:34 Fr 06.01.2006
Autor: SEAGATE

Aufgabe
Anna liebt Peter oder Michael oder ist es nicht so, daß Anna Peter liebt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


hallo,

vorab die original-aufgabenstellung, die ich wie folgt in die schreibweise der logik gebracht habe:

A [mm] \wedge [/mm] (P [mm] \vee [/mm] M)  [mm] \vee [/mm] (A [mm] \wedge \neg [/mm] P)

der 1. Teil der Aussagenverbindung A [mm] \wedge [/mm] (P [mm] \vee [/mm] M) ist nach dem Distributivgesetz Synonym für:

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) .

Also stellt sich die Aussagenverbindung wie folgt dar:

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) [mm] \vee [/mm] (A [mm] \wedge \neg [/mm] P)

Nun komme ich nicht weiter, weil ich der Meinung bin, daß (A [mm] \wedge \neg [/mm] P)
gleichbedeutend mit A [mm] \wedge \{F\} [/mm] ist. (F = Falsch):

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) [mm] \vee [/mm] (A [mm] \wedge \{F\}) [/mm]

Meine Überlegung:

Da nach den Regeln der Negationen gilt:

(P [mm] \wedge \neg [/mm] P) [mm] \gdw \{F\} [/mm]

habe ich also eine Verneinung auf der rechten Gleichungsseite und eine Zustimmung für Peter auf der linken Gleichungsseite, was mir wiederum "Falsch" zurück liefert.

Damit wäre für mich die Verneinung für Peter bewiesen, und das Wahr für Michael erbracht:

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) [mm] \vee [/mm] (A [mm] \wedge \{F\}) [/mm]

nur wie löse ich das jetzt weiter auf? fällt denn Peter jetzt nicht automatisch durch die erhaltene F-Aussage auch aus der linken seite raus,
sodaß links nur noch (A [mm] \wedge [/mm] M) übrig bleibt?

sollte man vieleicht hier diese komplette aussagenverbindung mit einer
wahrheitstabelle darstellen?

kann mir jemand vieleicht einen kleinen Ansatz zur Hilfe geben?

Liebe Grüsse, und herzlichen Dank

SEAGATE



        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Fr 06.01.2006
Autor: mathiash


> Anna liebt Peter oder Michael oder ist es nicht so, daß
> Anna Peter liebt?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
> hallo,
>  
> vorab die original-aufgabenstellung, die ich wie folgt in
> die schreibweise der logik gebracht habe:
>  
> A [mm]\wedge[/mm] (P [mm]\vee[/mm] M)  [mm]\vee[/mm] (A [mm]\wedge \neg[/mm] P)
>  
> der 1. Teil der Aussagenverbindung A [mm]\wedge[/mm] (P [mm]\vee[/mm] M) ist
> nach dem Distributivgesetz Synonym für:
>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) .
>  
> Also stellt sich die Aussagenverbindung wie folgt dar:
>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) [mm]\vee[/mm] (A [mm]\wedge \neg[/mm] P)
>  
> Nun komme ich nicht weiter, weil ich der Meinung bin, daß
> (A [mm]\wedge \neg[/mm] P)
>  gleichbedeutend mit A [mm]\wedge \{F\}[/mm] ist. (F = Falsch):

Hallo,

nein, Du kannst doch A ausklammern (distrib.) und bekommst

[mm] A\wedge (P\vee\neg P\vee [/mm] M)       was mit [mm] P\vee\neg P\vee [/mm] M [mm] \equiv 1\vee M\equiv [/mm] 1

aequivalent zu [mm] 1\wedge [/mm] A  [mm] \equiv [/mm] A  ist.  

Also: Anna liebt.    (Na, immerhin ! )

Viele Gruesse,

Mathias

>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) [mm]\vee[/mm] (A [mm]\wedge \{F\})[/mm]
>  
> Meine Überlegung:
>  
> Da nach den Regeln der Negationen gilt:
>  
> (P [mm]\wedge \neg[/mm] P) [mm]\gdw \{F\}[/mm]
>  
> habe ich also eine Verneinung auf der rechten
> Gleichungsseite und eine Zustimmung für Peter auf der
> linken Gleichungsseite, was mir wiederum "Falsch" zurück
> liefert.
>  
> Damit wäre für mich die Verneinung für Peter bewiesen, und
> das Wahr für Michael erbracht:
>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) [mm]\vee[/mm] (A [mm]\wedge \{F\})[/mm]
>  
> nur wie löse ich das jetzt weiter auf? fällt denn Peter
> jetzt nicht automatisch durch die erhaltene F-Aussage auch
> aus der linken seite raus,
>  sodaß links nur noch (A [mm]\wedge[/mm] M) übrig bleibt?
>  
> sollte man vieleicht hier diese komplette
> aussagenverbindung mit einer
>  wahrheitstabelle darstellen?
>  
> kann mir jemand vieleicht einen kleinen Ansatz zur Hilfe
> geben?
>  
> Liebe Grüsse, und herzlichen Dank
>  
> SEAGATE
>  
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]