www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperAutomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Automorphismus
Automorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Automorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Fr 12.02.2010
Autor: johnny11

Aufgabe
Identifizieren Sie zu einer bekannten Gruppe [mm] Aut(\IZ/n\IZ) [/mm] , die Gruppe der Automorphismen von [mm] \IZ/n\IZ. [/mm]

Also ich habe bei dieser Aufgabe noch nicht so eine grosse Ahnung.

Es sei mal f ein Iso mit f: [mm] \IZ/n\IZ \to \IZ/n\IZ, \overline{1} \mapsto \overline{1}. [/mm]

Ausserdem ist f(a+b) = f(a)+f(b), mit a,b [mm] \in \IZ/n\IZ [/mm]

f(a + [mm] a^{-1}) [/mm] = 0, f(a) + [mm] f(a)^{-1} [/mm] = 0.

Doch was kann ich nun als nächstes folgern was mich weiterbringt?


        
Bezug
Automorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Fr 12.02.2010
Autor: pelzig

Versteh ich die Aufgabe richtig, du sollst die Automorphismengruppe von [mm] $\IZ/n\IZ$ [/mm] bestimmen? Falls ja, dann brauchst du dir nur zu überlegen, dass das Bild eines jeden Endomorphismus [mm] $f\in\operatorname{End}(\IZ/n\IZ)$ [/mm] erzeugt wird durch $f(1)$. $f$ ist also genau dann surjektiv (und damit injektiv), wenn $f(1)$ die Ordnung $n$ in [mm] $\IZ/n\IZ$ [/mm] hat, d.h. wenn [mm] $\operatorname{ggT}(f(1),n)=1$ [/mm] ist, und dafür gibt es genau [mm] $\varphi(n)$ [/mm] Möglichkeiten. Dabei ist [mm] $\varphi$ [/mm] die []Eulersche Phi-Funktion, unter dem Link findest ist auch ein Hinweis versteckt, zu welcher Gruppe [mm] $\operatorname{Aut}(\IZ/n\IZ)$ [/mm] dann wohl isomorph sein könnte... :-)

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]