www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBahnen, Länge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Bahnen, Länge
Bahnen, Länge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bahnen, Länge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 So 10.01.2010
Autor: moerni

Aufgabe
Sei M eine transitive G-Menge, sei N [mm] \trianglelefteq [/mm] G und sei H die Standgruppe eines Elements von M. Dann zerfällt M in genau [G:NH] verschiedene N-Bahnen, von denen jede die Länge [N:N [mm] \cap [/mm] H] = [NH:H] hat.

Hallo.
Den ersten Teil der Aufgabe habe ich schon. Ich habe gezeigt, dass jede transitive G-Menge von der Form G/H ist mit einer geeigneten Untergruppe H [mm] \le [/mm] G. Ich konnte dann auch zeigen, dass es genau [G:NH] verschiedene N-Bahnen gibt. Jetzt muss ich noch zeigen, welche Länge eine solche N-Bahn hat. Hier komme ich nicht weiter.
Nach Definition ist die Länge einer Bahn gleich dem Index des Stabilisators. Der Stabilisator ist definiert als [mm] G_x=\{g \in G: gx=g\} \le [/mm] G. Ist dann in diesem Fall der Stabilisator [mm] N_x? [/mm] Hat jemand einen Tipp für mich, wie ich vorgehen soll?
Über eine Antwort wäre ich sehr dankbar,
moerni

        
Bezug
Bahnen, Länge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 So 10.01.2010
Autor: felixf

Hallo moerni!

> Sei M eine transitive G-Menge, sei N [mm]\trianglelefteq[/mm] G und
> sei H die Standgruppe eines Elements von M. Dann zerfällt

Ist die Standgruppe gleich dem Stabilisator?

> M in genau [G:NH] verschiedene N-Bahnen, von denen jede die
> Länge [N:N [mm]\cap[/mm] H] = [NH:H] hat.
>
>  Hallo.
>  Den ersten Teil der Aufgabe habe ich schon. Ich habe
> gezeigt, dass jede transitive G-Menge von der Form G/H ist
> mit einer geeigneten Untergruppe H [mm]\le[/mm] G. Ich konnte dann
> auch zeigen, dass es genau [G:NH] verschiedene N-Bahnen
> gibt. Jetzt muss ich noch zeigen, welche Länge eine solche
> N-Bahn hat. Hier komme ich nicht weiter.
> Nach Definition ist die Länge einer Bahn gleich dem Index
> des Stabilisators. Der Stabilisator ist definiert als
> [mm]G_x=\{g \in G: gx=g\} \le[/mm] G. Ist dann in diesem Fall der
> Stabilisator [mm]N_x?[/mm] Hat jemand einen Tipp für mich, wie ich
> vorgehen soll?

Da die Menge transitiv ist, sind zwei Stabilisatoren zueinander konjugiert: ist $y = g x$, so kannst du eine Beziehung zwischen [mm] $G_x$ [/mm] und [mm] $G_y$ [/mm] mit Hilfe von Konjugation durch $g$ herstellen. Wie die genau aussieht, musst du jetzt selber bestimmen.

Daraus folgt dann, dass alle Bahnen gleichgross sind. Zur Laenge der Bahnen: es gilt doch $|M| = [mm] \sum_{v \in V} |N_v|$ [/mm] mit einem Vertretersystem $V$ der $N$-Bahnen. Hier ist [mm] $|N_v|$ [/mm] unabhaengig von $v$, und $|V| = [G : N H]$. Also folgt [mm] $|N_v| [/mm] = [mm] \frac{|M|}{[G : N H]}$. [/mm] Kommst du damit evtl. weiter?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]