www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikBahnkurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Bahnkurve
Bahnkurve < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bahnkurve: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:08 Mi 01.11.2006
Autor: Mirja

Aufgabe
Die Position eines Punktteilchens sei gegeben durch den Positionsvektor [mm] \vec{a} [/mm] = [mm] \vektor{acos(wt) \\ bsin(wt)} [/mm] =>
mit a>b  und w = Winkelgeschindigkeit
1) Berechnen sie die Geschwindigkeit v(t) und die Beschleunigung a(t). Welchen Betrag haben die Geschwindigkeit und die Beschleunigung? Wie sehen die Einheitsvektoren in Richtung des Geschwindigkeits- und des Beschleunigungsvektors aus?
2) Bringen Sie die Bahnkurve auf die Form y(x), d.h. eliminieren sie den Parameter t. Um welche Kurve handelt es sich? (Hinweis: Für die Bahnkurve lässt sich eine Gleichung der Form Ax²+Bxy+Cy²=1 angeben, wie lauten A,B,C?)

Hallo,

wie lauten die Lösungswege und die Ergebnisse. Bei der 1ten Teilaufgabe muss ich wohl ableiten, aber wie?
Wäre euch sehr dankbar wenn Ihr zusätzlich zum Ergebnis und zum Lösungsweg möglichst noch anschauliche Erklärungen beifügen könntet, da ich die Aufgabe von Grund auf nicht verstehe (wenn nicht bin ich natürlich auch schon für ein Ergebnis sehr sehr dankbar).  

Vielen Dank!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Bahnkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Mi 01.11.2006
Autor: nitro1185

Hallo!!Also ein bisschen Arbeit von dir oder ein paar gedanken wären schon gut. oder zumindest eine definition der winkelgeschwindigkeit.

einfach die lösung auf knopfdruck bestellen läuft nicht. wie ist die winkelgeschwindigkeit definiert??

mfg daniel

Bezug
                
Bezug
Bahnkurve: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Mi 01.11.2006
Autor: Mirja

Hi,
1) Korrektur (nur zur "Verdeutlichung"): man nennt den Positionsvektor wohl besser r und nicht a , sonst könnte man denken das in der Aufgabe 2 mal ein gleiches a vorkommt
2)
Also das einzige was ich glaube zu wissen, ist, das ja die 1te Ableitung die Geschwindigkeit und die zweite die Beschleunigung sein muß:
somit wäre doch die 1. Ableitung von:
[mm] \vec{r} [/mm] (t) =   [mm] \vektor{acos(wt) \\ bsin(wt)} [/mm]   =>
[mm] \vec{v} [/mm] (t) =   [mm] \vektor{-awsin(wt) \\ bwcos(wt)} [/mm] = Geschwindigkeit, oder?

Wenn dann die 2.Ableitung die Beschleunigung ist, dann müßte das doch wie folgt lauten:

[mm] \vec{a} [/mm] (t) = [mm] \vektor{-awwcos(wt) \\ -bwwsin(wt)} [/mm]

Aber ehrlich gesagt finde ich, dass die 2. Ableitung doch  sehr falsch aussieht oder??
Das ist aber auch die einzige Idee auf die ich zu dieser Aufgabe nach ewigen überlegen gekommen bin

Bezug
        
Bezug
Bahnkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Mi 01.11.2006
Autor: Event_Horizon

Deine Idee mit den Ableitungen ist aber 100% korrekt!

Nun zu dem anderen: Wie man den Betrag eines Vektors ausrechnet, weißt du aber, oder?

Die Richtungsvektoren haben die Länge 1, also mußt du deine Vektoren noch duch den jeweils berechneten Betrag teilen.






Bezug
                
Bezug
Bahnkurve: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 Mi 01.11.2006
Autor: Mirja

Naja bin Erstsemsetler und habe schon Jahre kein Physik mehr gemacht, daher fällt es mir im Moment etwas schwer mich wieder in die Physik (oder Mathematik oder wie auch immer) "reinzudenken"

Der Betrag ist doch (mal ganz minimalistisch ausgedrückt)
einfach nur das weglassen des - schätze mal das das bei den Vektoren wohl genauso ist

das heißt wenn ich also den betrag meiner beiden Vektoren nehme und duch 1 teile erhalte ich die jeweiligen Einheitsvektoren?

Vielen Dank!!!!  

Bezug
                        
Bezug
Bahnkurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Mi 01.11.2006
Autor: chrisno


> Naja bin Erstsemsetler und habe schon Jahre kein Physik
> mehr gemacht, daher fällt es mir im Moment etwas schwer
> mich wieder in die Physik (oder Mathematik oder wie auch
> immer) "reinzudenken"
>  
> Der Betrag ist doch (mal ganz minimalistisch ausgedrückt)
>  einfach nur das weglassen des - schätze mal das das bei
> den Vektoren wohl genauso ist

Nein. Wenn Du die Vektoren mit x- und y-Koordinaten schreibst, dann ist der Betrag nach Pythagoras:
[mm] $|\vec{r}| [/mm] = [mm] \sqrt{x^2 + y^2}$. [/mm]

>  
> das heißt wenn ich also den betrag meiner beiden Vektoren
> nehme und duch 1 teile erhalte ich die jeweiligen
> Einheitsvektoren?

Auch nein. Du nimmst die Komponenten der Vektoren und teilst sie jeweils durch den Betrag des Vektors. Diese neuen Komponenten sind die des Einheitsvektors mit der gleichen Richtung

>  
> Vielen Dank!!!!  

Bezug
                                
Bezug
Bahnkurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Mi 01.11.2006
Autor: nitro1185

Hallo.

Deine Ideen waren ja gar nicht so schlecht :-)!!!

Beim Betrag eines Vektors ziechne dir das Koordinatensystem(x,yAchsen) und zeichne dir einen beliebigen Vektor ein. Markiere dir die Länge des Vektors(eine Strecke) und Zeichne ebenfalls die Längen der x und y Koordinaten ein. Dann erhälst du ein rechtwinkliges Dreieck wo du den Pythagoras anwenden kannst!!!

Zu den anderen Fragen ein Tipp: Der Vektor [mm] \vec{r} [/mm] zeigt von Mittelpunkt des Koordinatensystems zum Punkt hin. Die Ableitung, also [mm] \vec{v} [/mm] ist SENKRECHT zu [mm] \vec{r} [/mm] und zeigt tangential zur Bahnkurve was übrigens ein Kreis ist!!!

MFG Daniel

Bezug
                                        
Bezug
Bahnkurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:27 Do 02.11.2006
Autor: Mirja

Guten Morgen,

Total cool das sich noch jemand mit meiner sicherlich "dummen" Rückfrage auseinandergesetzt hat.

Ihr habt mir echt super weitergeholfen.

Vielen Vielen Dank

Bis zum nächsten Mal :))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]