Bahnkurve einer Kreisbahn < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:41 Mo 23.11.2009 | Autor: | haploid |
Aufgabe | a)Gegeben sei die Bahnkurve einer Kreisbahn in der x-y-Ebene:[mm] \vec{r}(t)=Rcos(\omega t)\vec{e_x}+Rsin(\omega t)\vec{e_y}[/mm]. Berechnen Sie die Ableitung [mm](\vec{r}(t))'[/mm]. Es sei [mm]\vec{\omega}=\omega \vec{e_z}[/mm]. Rechnen Sie explizit nach, dass [mm](\vec{r}(t))'=\vec{\omega} \times \vec{r}(t)[/mm].
b) Gegeben sei eine Winkelgeschwindigkeit und ein Ortsvektor auf der Bahnkurve:
[mm]\vec{\omega}=\vektor{1 \\ 1 \\ 1}[/mm]; [mm]\vec{r_1}=\vektor{4 \\ -3 \\ -1}[/mm].
Finden Sie einen beliebigen zweiten Ortsvektor [mm]\vec{r_2}[/mm], der ebenfalls auf dieser Bahnkurve liegt. Überprüfen
Sie, dass der Betrag der Bahngeschwindigkeit in beiden Fällen gleich ist, obwohl die dazugehörigen
Vektoren [mm]\vec{v_1}[/mm] bzw. [mm]\vec{v_2}[/mm] sehr wohl verschieden sind. |
Hallo!
Die Teilaufgabe a) konnte ich noch lösen.
Aber wie stelle ich die Bahnkurve für b) auf? Ich brauche ja [mm]\omega[/mm] und habe [mm]\vec{\omega}[/mm] gegeben. Ich dachte, da [mm]\vec{\omega}=\omega \vec{e_z}[/mm] muss ja z.B. eigentlich [mm]\vektor{1 \\ 1 \\ 1}=\omega \vektor{0 \\ 0 \\ 1}[/mm] erfüllt sein.
Aber dafür gibt es doch kein [mm]\omega[/mm]...?
Wie löse ich dann die Aufgabe b)?
Danke für Antworten!
LG, Eva
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:56 Mo 23.11.2009 | Autor: | leduart |
Hallo
in b) hast du ja ne andere Kreisbewegung, nicht mehr in der x,y Ebene, sondern, wie in a) gezeigt senkrecht zu [mm] \omega.
[/mm]
also such nen zweiten Vektor senkrecht auf (1,1,1), der von der Achse denselben abstand wie r1 hat.
Grus leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:11 Mo 23.11.2009 | Autor: | haploid |
Aha!
Dann macht das Ganze schon viel mehr Sinn... :)
Danke schön!
|
|
|
|